单个、自生的RP-Au-PR结构增强金属纳米团簇的光致发光量子产率19倍
收稿日期: 2021-11-05
网络出版日期: 2021-11-17
基金资助
项目受国家自然科学基金(92061110); 项目受国家自然科学基金(21925303); 项目受国家自然科学基金(21771186); 项目受国家自然科学基金(21829501); 项目受国家自然科学基金(21222301); 项目受国家自然科学基金(21171170); 项目受国家自然科学基金(21528303); 合肥微尺度物质科学国家研究中心(KF2020102); 安徽大学(以及配备ConfotecTM MR520荧光/拉曼光谱仪)(S020118002/113); 中国科学院合肥研究院院长基金(BJPY2019A02); 中科院合肥物质科学研究院“十三五”规划重点支持项目(KP-2017-16); 中国科学院合肥科学中心协同创新项目(2020HSC-CIP005)
Single, Self-Born RP-Au-PR Motif Boosts 19-Fold Photoluminescence Quantum Yield of Metal Nanocluster
Received date: 2021-11-05
Online published: 2021-11-17
Supported by
National Natural Science Foundation of China(92061110); National Natural Science Foundation of China(21925303); National Natural Science Foundation of China(21771186); National Natural Science Foundation of China(21829501); National Natural Science Foundation of China(21222301); National Natural Science Foundation of China(21171170); National Natural Science Foundation of China(21528303); Hefei National Laboratory for Physical Sciences at the Microscale(KF2020102); Anhui University(and the provision of ConfotecTM MR520 fluorescence/Raman spectrometer)(S020118002/113); CASHIPS Director’s Fund(BJPY2019A02); Key Program of the 13th five-year plan, CASHIPS(KP-2017-16); Collaborative Innovation Program of Hefei Science Center, CAS(2020HSC-CIP005)
膦保护金纳米团簇的研究可追溯到1969年, “RP-Au-PR” (R为烷基)结构在膦保护的金纳米团簇上目前还未见报道, 而相似的 “RS-Au-SR” 结构在硫醇保护金纳米团簇中经常被发现, 其具有多种功能(例如增强团簇发光). 本工作以双膦作为配体成功合成出原子层次单分布的金银纳米团簇[Au10Ag4(Dppp)5Cl4]Cl2 (Au10Ag4 NC, Dppp为1,3-双(二苯基膦)丙烷), 首次发现它具有 “RP-Au-PR” 结构. 有趣的是, 当二氯甲烷作为溶剂时, 该结构可在Au10Ag4 NC中自行消失, 生成[Au9Ag4(Dppp)4Cl4]Cl (Au9Ag4 NC); 另一方面, 当乙醇为溶剂时, 该结构可在Au9Ag4 NC中自行生成, 从而转变成Au10Ag4 NC. 两个团簇的紫外-可见-近红外(UV/Vis/NIR)吸收峰除了有轻微的位移外, 没有显著的区别, 暗示着 “RP-Au-PR” 结构对团簇的电子结构没有根本影响, 这一点也被密度泛函理论(DFT)计算所支撑. 该结构促使Au10Ag4 NC的光致发光量子产率比Au9Ag4 NC的提高了19倍(达到10.32%), 这归因于 “RP-Au-PR” 结构诱导的电荷转移和刚性的增强. 本工作揭示了新的团簇结构和发光现象, 对团簇构效关系的理解和性能改善有重要的启发.
关键词: 金属纳米团簇; “RP-Au-PR”结构; 光致发光
许道兰 , 杨颖 , 范文涛 , 何宗兵 , 邹家丰 , 冯磊 , 李漫波 , 伍志鲲 . 单个、自生的RP-Au-PR结构增强金属纳米团簇的光致发光量子产率19倍[J]. 化学学报, 2022 , 80(1) : 1 -6 . DOI: 10.6023/A21110499
The study of phosphine-protected gold nanocluster can be dated back to 1969, however, the RP-Au-PR motif has not been reported until now. Meanwhile, its analogue RS-Au-SR motif was often reported in thiolated gold nanoclusters, being of multiple functions (e.g., enhancing the luminescence). Herein, we successfully synthesized a monodisperse gold-silver nanocluster: [Au10Ag4(Dppp)5Cl4]Cl2 (Au10Ag4 NC, where the Dppp represents 1,3-diphenylphosphine propane, and NC represents nanocluster) by introducing the reducing agent (NaBH4) in an dichloromethane-ethanol solution of chloroauric acid, silver nitrate and 1,3-diphenylphosphine propane. Hydrochloric acid was added to promote the nanocluster size-focusing. Au10Ag4 NC is unstable in dichloromethane and will be transformed into another nanocluster [Au9Ag4(Dppp)4Cl4]Cl (Au9Ag4 NC). The structures and compositions of Au10Ag4 and Au9Ag4 NCs have been determined by single crystal X-ray crystallography and electrospray ionization mass spectrometry (ESI-MS). Au10Ag4 NC possesses an ico sahedral Au9Ag4 core, which is protected by a special RP-Au-PR motif, diphosphine and halogen ligands; Au9Ag4 NC has an icosahedral Au9Ag4 metal core protected by bisphosphine and halogen ligands, thus the major structural difference between Au10Ag4 and Au9Ag4 NCs is the RP-Au-PR motif. The motif can be self-vanished in Au10Ag4 NC when dichloromethane acts as the solvent, resulting in the formation of Au9Ag4 NC as mentioned above; on the other hand, the motif can self-bear in Au9Ag4 NC when the solvent is ethanol instead of dichloromethane, resulting in the formation of Au10Ag4 NC. The two nanoclusters showed similar ultraviolet-visible-near infrared (UV/Vis/NIR) absorption spectra except for slight shift of the profile, indicating that the RP-Au-PR motif has no essential influence on the electronic structure of nanocluster, which was supported by density functional theory (DFT) calculations. However, the photoluminescence quantum yield of Au10Ag4 NC (10.32%) is 19 times higher than that of Au9Ag4 NC (0.52%), ascribing to the enhancement of charge transfer and structure rigidity induced by the motif. This work provides new views to the structure and photoluminescence of gold-silver nanocluster, has important implications for the structure-property understanding and the property improvement.
Key words: metal nanocluster; RP-Au-PR motif; photoluminescence
[1] | Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. |
[2] | Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208. |
[3] | Wan, X.-K.; Yuan, S.-F.; Lin, Z.-W.; Wang, Q.-M. Angew. Chem. Int. Ed. 2014, 53, 2923. |
[4] | Si, W.-D.; Li, Y.-Z.; Zhang, S.-S.; Wang, S.; Feng, L.; Gao, Z.-Y.; Tung, C.-H.; Sun, D. ACS Nano 2021, 15, 16019. |
[5] | Antonello, S.; Perera, N. V.; Ruzzi, M.; Gascón, J. A.; Maran, F. J. Am. Chem. Soc. 2013, 135, 15585. |
[6] | Li, Q.; Zhou, M.; So, W. Y.; Huang, J.; Li, M.; Kauffffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z.; Jin, R. J. Am. Chem. Soc. 2019, 141, 5314. |
[7] | Wu, Z.; Yao, Q.; Chai, O. J. H.; Ding, N.; Xu, W.; Zang, S.; Xie, J. Angew. Chem. Int. Ed. 2020, 59, 9934. |
[8] | Jin, F.; Dong, H.; Zhao, Y.; Zhuang, S.; Liao, L.; Yan, N.; Gu, W.; Zha, J.; Yuan, J.; Li, J.; Deng, H.; Gan, Z.; Yang, J.; Wu, Z. Acta Chim. Sinica 2020, 78, 407. (in Chinese) |
[8] | ( 金凤鸣, 董宏伟, 赵燕, 庄胜利, 廖玲文, 闫楠, 古万苗, 查珺, 袁金云, 李进, 邓海腾, 甘自保, 杨金龙, 伍志鲲, 化学学报 2020, 78, 407.) |
[9] | Yamazoe, S.; Koyasu, K.; Tsukuda, T. Acc. Chem. Res. 2014, 47, 816. |
[10] | Liu, C.; Abroshan, H.; Yan, C.; Li, G.; Haruta, M. ACS Catal. 2016, 6, 92. |
[11] | Li, M.-B.; Tian, S.-K.; Wu, Z. Chin. J. Chem. 2017, 35, 567. |
[12] | Yan, J.; Teo, B. K.; Zheng, N. Acc. Chem. Res. 2018, 51, 3084. |
[13] | Zhuang, S.; Chen, D.; Liao, L.; Zhao, Y.; Xia, N.; Zhang, W.; Wang, C.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2020, 59, 3073. |
[14] | Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Chem. Rev. 2015, 115, 10410. |
[15] | Chen, L.; Zhang, Y.; Jiang, H.; Wang, X.; Liu, C. Chin. J. Chem. 2016, 34, 589. |
[16] | Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363. (in Chinese) |
[16] | ( 高冠斌, 龚德君, 张明曦, 孙涛垒, 化学学报 2016, 74, 363.) |
[17] | Lin, R.; Chen, Y.; Tao, G.; Pei, X.; Liu, F.; Li, N. Acta Chim. Sinica 2017, 75, 1103. (in Chinese) |
[17] | ( 林若韵, 陈阳, 陶广宇, 裴晓静, 刘锋, 李娜, 化学学报 2017, 75, 1103.) |
[18] | Jia, T.-T.; Yang, G.; Mo, S.-J.; Wang, Z.-Y.; Li, B.-J.; Ma, W.; Guo, Y.-X.; Chen, X.; Zhao, X.; Liu, J.-Q.; Zang, S.-Q. ACS Nano 2019, 13, 8320. |
[19] | Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Anal. Chem. 2011, 83, 1193. |
[20] | George, A.; Shibu, E. S.; Maliyekkal, S. M.; Bootharaju, M. S.; Pradeep, T. ACS Appl. Mater. Interfaces 2012, 4, 639. |
[21] | Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Chem. - Asian J. 2013, 8, 858. |
[22] | Zhang, L.; Wang, E. Nano Today 2014, 9, 132. |
[23] | Qin, H.-N.; Wang, Z.-Y.; Zang, S.-Q. Acta Chim. Sinica 2021, 79, 1037. (in Chinese) |
[23] | ( 秦浩男, 王朝阳, 臧双全, 化学学报 2021, 79, 1037.) |
[24] | McPartlin, M.; Mason, R.; Malatesta, L. J. Chem. Soc. D 1969, 334. |
[25] | Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1981, 201. |
[26] | Teo, B. K.; Hong, M. C.; Zhang, H.; Huang, D. B. Angew. Chem. Int. Ed. 1987, 26, 897. |
[27] | Kamei, Y.; Shichibu, Y.; Konishi, K. Angew. Chem. Int. Ed. 2011, 50, 7442. |
[28] | Chen, J.; Zhang, Q.-F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L.-S. J. Am. Chem. Soc. 2014, 136, 92. |
[29] | Zhu, M.; Li, M.; Yao, C.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.; Wu, Z. Acta Phys.-Chim. Sin. 2018, 34, 792. (in Chinese) |
[29] | ( 祝敏, 李漫波, 姚传好, 夏楠, 赵燕, 闫楠, 廖玲文, 伍志鲲, 物理化学学报, 2018, 34, 792.) |
[30] | Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430. |
[31] | Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. |
[32] | Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568. |
[33] | Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. J. Am. Chem. Soc. 2015, 137, 8244. |
[34] | Gan, Z.; Lin, Y.; Luo, L.; Han, G.; Liu, W.; Liu, Z.; Yao, C.; Weng, L.; Liao, L.; Chen, J.; Liu, X.; Luo, Y.; Wang, C.; Wei, S.; Wu, Z. Angew. Chem. Int. Ed. 2016, 55, 11567. |
[35] | Wu, Z.; Suhana, J.; Jin, R. J. Mater. Chem. 2009, 19, 622. |
[36] | Xia, N.; Wu, Z. Chem. Sci. 2021, 12, 2368. |
[37] | Shichibu, Y.; Konishi, K. Small 2010, 6, 1216. |
[38] | Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. 2008, 105, 9157. |
[39] | Wu, Z.; Jin, R. Chem. Eur. J. 2011, 17, 13966. |
[40] | Dhayal, R. S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C.-W. Angew. Chem. Int. Ed. 2015, 54, 3702. |
[41] | Jin, S.; Zou, X.; Xiong, L.; Du, W.; Wang, S.; Pei, Y.; Zhu, M. Angew. Chem. Int. Ed. 2018, 57, 16768. |
[42] | Weerawardene, K. D. M.; Pandeya, P.; Zhou, M.; Chen, Y.; Jin, R.; Aikens, C. M. J. Am. Chem. Soc. 2019, 141, 18715. |
/
〈 |
|
〉 |