综述

二氧化碳还原电催化剂的结构设计及性能研究进展

  • 李泽洋 ,
  • 杨宇森 ,
  • 卫敏
展开
  • 北京化工大学化学学院化工资源有效利用国家重点实验室 北京 100029

李泽洋, 北京化工大学在读研究生, 2020年6月于北京化工大学化学学院应用化学专业获得学士学位, 随后加入北京化工大学化工资源有效利用国家重点实验室卫敏教授课题组, 主要研究方向为电催化二氧化碳还原.

杨宇森, 男, 博士, 2014年6月在北京化工大学理学院应用化学专业获得学士学位, 随后加入北京化工大学化工资源有效利用国家重点实验室卫敏教授课题组, 并于2019年6月获得化学工程与技术专业博士学位. 博士阶段主要研究水滑石基负载型催化剂的制备及其对选择性加氢反应的催化性能.

卫敏, 女, 教授, 博士生导师. 2001年于北京大学获理学博士学位. 2008年佐治亚理工学院访问学者. 2001年至今于北京化工大学从事插层化学与功能材料研究. 研究方向: (1)插层结构功能材料的结构设计、组装与性能调控; (2)新型催化材料的结构设计和性能研究. 近5年以通讯作者在J. Am. Chem. Soc.Angew. Chem., Int. Ed.Nature Commun.等刊物发表SCI收录研究论文90余篇; 他引11700余次. 2016年入选英国皇家化学会会士; 现担任Science Bulletin期刊副主编, 《催化学报》编委. 获2012年国家杰出青年基金资助. 获2015年中国石油和化学工业联合会科技进步一等奖. 入选2017年度科技部中青年科技创新领军人才和国家百千万人才工程, 被授予“有突出贡献中青年专家”称号. 获2018年第十五届中国青年科技奖.

收稿日期: 2021-11-02

  网络出版日期: 2022-01-06

基金资助

国家重点研发计划(2021YFC2103501); 国家自然科学基金(22172006); 国家自然科学基金(21521005); 国家自然科学基金(22102006); 北京市自然科学基金(2212012); 中央高校基本科研业务费(XK1802-6); 中央高校基本科研业务费(XK1803-05)

Structural Design and Performance of Electrocatalysts for Carbon Dioxide Reduction: A Review

  • Zeyang Li ,
  • Yusen Yang ,
  • Min Wei
Expand
  • State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029

Received date: 2021-11-02

  Online published: 2022-01-06

Supported by

National Key Research and Development Program of China(2021YFC2103501); National Natural Science Foundation of China(22172006); National Natural Science Foundation of China(21521005); National Natural Science Foundation of China(22102006); Beijing Natural Science Foundation(2212012); Fundamental Research Funds for the Central Universities(XK1802-6); Fundamental Research Funds for the Central Universities(XK1803-05)

摘要

随着人类社会工业化进程的推进, 化石能源被过度消耗, 人类向大气中排放过量的二氧化碳, 造成能源危机和环境问题. 通过电催化二氧化碳还原反应来制备高附加值精细化学品是积极探索建立人工碳循环的方向之一, 引起了基础研究与工业应用领域研究者的广泛关注. 设计与制备具有高活性、高选择性和高稳定性的电催化剂对于实现二氧化碳高效还原具有重要意义. 近年来, 关于催化剂与电极材料的结构设计和应用案例有许多报道, 取得了显著的进步. 分别从尺寸效应、表面特性、缺陷工程和多级结构四个方面对催化剂结构与电极结构的调控策略进行了综述, 并对电催化二氧化碳还原领域的发展进行了展望.

本文引用格式

李泽洋 , 杨宇森 , 卫敏 . 二氧化碳还原电催化剂的结构设计及性能研究进展[J]. 化学学报, 2022 , 80(2) : 199 -213 . DOI: 10.6023/A21110493

Abstract

With the advance of industrialization of human society, fossil energy has been overconsumed, and excessive carbon dioxide has been discharged into the atmosphere, resulting in energy crisis and environmental issues. The preparation of high value-added fine chemicals by electrocatalytic reduction of carbon dioxide is one of the directions to explore the establishment of artificial carbon cycle, which has attracted extensive attention in fundamental research and industrial applications. Structural design and preparation of electrocatalysts with high activity, selectivity and stability are of great significance to achieve efficient catalytic performance for carbon dioxide reduction. In recent years, many studies have reported the structural design ideas and application cases of catalyst and electrode materials, and remarkable progress has been made. In this review, the regulation strategies of catalyst structure and electrode structure are summarized from four aspects: size effect, surface characteristics, defect engineering and multi-stage structure, and the development of electrocatalytic carbon dioxide reduction is prospected.

参考文献

[1]
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, 6438.
[2]
Tong, D.; Zhang, Q.; Davis, S. J.; Liu, F.; Zheng, B.; Geng, G.; Xue, T.; Li, M.; Hong, C.; Lu, Z.; Streets, D. G.; Guan, D.; He, K. Nat. Sustain. 2018, 1, 59.
[3]
Ross, M. B.; De Luna, P.; Li, Y.; Dinh, C. T.; Kim, D.; Yang, P.; Sargent, E. H. Nat. Catal. 2019, 2, 648.
[4]
Ye, L.; Ying, Y.; Sun, D.; Zhang, Z.; Fei, L.; Wen, Z.; Qiao, J.; Huang, H. Angew. Chem., Int. Ed. 2020, 59, 3244.
[5]
Kuang, M.; Guan, A.; Gu, Z.; Han, P.; Qian, L.; Zheng, G. Nano Res. 2019, 12, 2324.
[6]
Zhang, Z.; Wen, G.; Luo, D.; Ren, B.; Zhu, Y.; Gao, R.; Dou, H.; Sun, G.; Feng, M.; Bai, Z.; Yu, A.; Chen, Z. J. Am. Chem. Soc. 2021, 143, 6855.
[7]
Mou, S.; Li, Y.; Yue, L.; Liang, J.; Luo, Y.; Liu, Q.; Li, T.; Lu, S.; Asiri, A. M.; Xiong, X.; Ma, D.; Sun, X. Nano Res. 2021, 14, 2831.
[8]
Li, H.; Xiao, N.; Wang, Y.; Li, C.; Ye, X.; Guo, Z.; Pan, X.; Liu, C.; Bai, J.; Xiao, J.; Zhang, X.; Zhao, S.; Qiu, J. J. Mater. Chem. A 2019, 7, 18852.
[9]
Mu, C.; Kou, W.; Zhang, Y.; Xu, L. Acta Chim. Sinica 2021, 79, 925. (in Chinese)
[9]
( 穆春辉, 寇伟, 张艺馨, 徐联宾, 化学学报, 2021, 79, 925.)
[10]
Xiong, L.; Zhang, X.; Chen, L.; Deng, Z.; Han, S.; Chen, Y.; Zhong, J.; Sun, H.; Lian, Y.; Yang, B.; Yuan, X.; Yu, H.; Liu, Y.; Yang, X.; Guo, J.; Rummeli, M. H.; Jiao, Y.; Peng, Y. Adv. Mater. 2021, 33, 2101741.
[11]
Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T.-K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X.; Zheng, G. ACS Energy Lett. 2020, 5, 1044.
[12]
Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M.; Huang, Y. Nano Res. 2021, 14, 3497.
[13]
Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. J. Am. Chem. Soc. 2019, 141, 12717.
[14]
Yang, D.; Zhu, Q.; Chen, C.; Liu, H.; Liu, Z.; Zhao, Z.; Zhang, X.; Liu, S.; Han, B. Nat. Commun. 2019, 10, 677.
[15]
Guo, W.; Liu, S.; Tan, X.; Wu, R.; Yan, X.; Chen, C.; Zhu, Q.; Zheng, L.; Ma, J.; Zhang, J.; Huang, Y.; Sun, X.; Han, B. Angew. Chem., Int. Ed. 2021, 60, 21979.
[16]
Liu, S.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Angew. Chem., Int. Ed. 2019, 58, 13828.
[17]
Li, F.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Angew. Chem., Int. Ed. 2017, 56, 505.
[18]
Liu, G.; Li, Z.; Shi, J.; Sun, K.; Ji, Y.; Wang, Z.; Qiu, Y.; Liu, Y.; Wang, Z.; Hu, P. Appl. Catal. B: Environ. 2020, 260, 118134.
[19]
Yuan, X.; Chen, S.; Cheng, D.; Li, L.; Zhu, W.; Zhong, D.; Zhao, Z. J.; Li, J.; Wang, T.; Gong, J. Angew. Chem., Int. Ed. 2021, 60, 15344.
[20]
Tan, Y. C.; Lee, K. B.; Song, H.; Oh, J. Joule 2020, 4, 1104.
[21]
Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W. Chem 2018, 4, 2571.
[22]
Wang, R.; Xu, M.; Hong, S.; Zou, Y.; Ling, L. Acta Chim. Sinica 2021, 79, 932. (in Chinese)
[22]
( 王瑞兆, 徐铭楷, 洪晟, 邹云杰, 凌岚, 化学学报, 2021, 79, 932.)
[23]
Chen, Q.; Kuang, Q.; Xie, Z. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
[23]
( 陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
[24]
Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Chem. Rev. 2018, 118, 6337.
[25]
Guan, Y.; Liu, M.; Rao, X.; Liu, Y.; Zhang, J. J. Mater. Chem. A 2021, 9, 13770.
[26]
Zhang, B.; Jiang, Y.; Gao, M.; Ma, T.; Sun, W.; Pan, H. Nano Energy 2021, 80, 105504.
[27]
Ma, Y.; Shi, R.; Zhang, T. Acta Chim. Sinica 2021, 79, 369.
[27]
( 马一宁, 施润, 张铁锐, 化学学报, 2021, 79, 369.)
[28]
Chen, Z.; Zhang, G.; Du, L.; Zheng, Y.; Sun, L.; Sun, S. Small 2020, 16, 2004158.
[29]
Zou, Y.; Wang, S. Adv. Sci. 2021, 8, 2003579.
[30]
Wang, J.; Tan, H. Y.; Zhu, Y.; Chu, H.; Chen, H. M. Angew. Chem., Int. Ed. 2021, 133, 17394.
[31]
Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, e1807166.
[32]
Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. ACS Catal. 2019, 9, 7937.
[33]
De Jesus Gálvez-Vázquez, M.; Moreno-García, P.; Xu, H.; Hou, Y.; Hu, H.; Montiel, I. Z.; Rudnev, A. V.; Alinejad, S.; Grozovski, V.; Wiley, B. J.; Arenz, M.; Broekmann, P. ACS Catal. 2020, 10, 13096.
[34]
Gao, D.; Wei, P.; Li, H.; Lin, L.; Wang, G.; Bao, X. Acta Phys.-Chim. Sin. 2021, 37, 2009021.
[34]
( 高敦峰, 魏鹏飞, 李合肥, 林龙, 汪国雄, 包信和, 物理化学学报, 2021, 37, 2009021.)
[35]
Tayyebi, E.; Hussain, J.; Abghoui, Y.; Skúlason, E. J. Phys. Chem. C, 2018, 122, 10078.
[36]
Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, M. T. M. J. Am. Chem. Soc. 2020, 142, 4154.
[37]
Zhang, E.; Wang, T.; Yu, K.; Liu, J.; Chen, W.; Li, A.; Rong, H.; Lin, R.; Ji, S.; Zheng, X.; Wang, Y.; Zheng, L.; Chen, C.; Wang, D.; Zhang, J.; Li, Y. J. Am. Chem. Soc. 2019, 141, 16569.
[38]
Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Appl. Catal. B: Environ. 2020, 273, 119060.
[39]
Shang, H.; Wang, T.; Pei, J.; Jiang, Z.; Zhou, D.; Wang, Y.; Li, H.; Dong, J.; Zhuang, Z.; Chen, W.; Wang, D.; Zhang, J.; Li, Y. Angew. Chem., Int. Ed. 2020, 59, 22465.
[40]
Wei, X.; Yin, Z.; Lyu, K.; Li, Z.; Gong, J.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. ACS Catal. 2020, 10, 4103.
[41]
Lv, X.; Shang, L.; Zhou, S.; Li, S.; Wang, Y.; Wang, Z.; Sham, T. K.; Peng, C.; Zheng, G. Adv. Energy Mater. 2020, 10, 2001987.
[42]
Zhuang, T. T.; Pang, Y.; Liang, Z. Q.; Wang, Z.; Li, Y.; Tan, C. S.; Li, J.; Dinh, C. T.; De Luna, P.; Hsieh, P. L.; Burdyny, T.; Li, H. H.; Liu, M.; Wang, Y.; Li, F.; Proppe, A.; Johnston, A.; Nam, D. H.; Wu, Z. Y.; Zheng, Y. R.; Ip, A. H.; Tan, H.; Chen, L. J.; Yu, S. H.; Kelley, S. O.; Sinton, D.; Sargent, E. H. Nat. Catal. 2018, 1, 946.
[43]
Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019, 10, 1754.
[44]
Ding, P.; Zhao, H.; Li, T.; Luo, Y.; Fan, G.; Chen, G.; Gao, S.; Shi, X.; Lu, S.; Sun, X. J. Mater. Chem. A 2020, 8, 21947.
[45]
Zhu, W.; Michalsky, R.; Metin, O.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833.
[46]
Salehi, A.; Jhong, H.; Rosen, B.; Zhu, W.; Ma, S.; Kenis, P.; Masel, R. J. Phys. Chem. C 2013, 117, 1627.
[47]
Xie, C.; Niu, Z.; Kim, D.; Li, M.; Yang, P. Chem. Rev. 2020, 120, 1184.
[48]
Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Wang, S.; Liu, H.; Dou, S. Adv. Mater. 2017, 29, 1701784.
[49]
Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. ACS Catal. 2019, 9, 7270.
[50]
Sun, T.; Xu, L.; Wang, D.; Li, Y. Nano Res. 2019, 12, 2067.
[51]
Zhang, Q.; Guan, J. Adv. Funct. Mater. 2020, 30, 2000768.
[52]
Teeter, T. E.; Rysselberghe, P., V., J. Chem. Phys. 1954, 22, 759.
[53]
Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14, 1695.
[54]
Chen, Z.; Wang, T.; Liu, B.; Cheng, D.; Hu, C.; Zhang, G.; Zhu, W.; Wang, H.; Zhao, Z. J.; Gong, J. J. Am. Chem. Soc. 2020, 142, 6878.
[55]
Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165.
[56]
Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. ACS Catal. 2017, 7, 4822.
[57]
Gottle, A. J.; Koper, M. T. M. J. Am. Chem. Soc. 2018, 140, 4826.
[58]
Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137, 4288.
[59]
Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978.
[60]
Hu, Q.; Han, Z.; Wang, X.; Li, G.; Wang, Z.; Huang, X.; Yang, H.; Ren, X.; Zhang, Q.; Liu, J.; He, C. Angew. Chem., Int. Ed. 2020, 59, 19054.
[61]
Ying, Y.; Luo, X.; Qiao, J.; Huang, H. Adv. Funct. Mater. 2020, 31, 2001987.
[62]
Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. ACS Catal. 2017, 7, 1520.
[63]
Zu, X.; Li, X.; Liu, W.; Sun, Y.; Xu, J.; Yao, T.; Yan, W.; Gao, S.; Wang, C.; Wei, S.; Xie, Y. Adv. Mater. 2019, 31, 1808135.
[64]
Li, Z.; He, D.; Yan, X.; Dai, S.; Younan, S.; Ke, Z.; Pan, X.; Xiao, X.; Wu, H.; Gu, J. Angew. Chem., Int. Ed. 2020, 59, 18572.
[65]
Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y. J. Am. Chem. Soc. 2017, 139, 8078.
[66]
Luc, W.; Collins, C.; Wang, S.; Xin, H.; He, K.; Kang, Y.; Jiao, F. J. Am. Chem. Soc. 2017, 139, 1885.
[67]
Jiang, Z.; Wang, T.; Pei, J.; Shang, H.; Zhou, D.; Li, H.; Dong, J.; Wang, Y.; Cao, R.; Zhuang, Z.; Chen, W.; Wang, D.; Zhang, J.; Li, Y. Energy Environ. Sci. 2020, 13, 2856.
[68]
Chen, X.; Henckel, D. A.; Nwabara, U. O.; Li, Y.; Frenkel, A. I.; Fister, T. T.; Kenis, P. J. A.; Gewirth, A. A. ACS Catal. 2019, 10, 672.
[69]
Liu, S. Q.; Gao, M. R.; Feng, R. F.; Gong, L.; Zeng, H.; Luo, J. L. ACS Catal. 2021, 11, 7604.
[70]
Varandili, S. B.; Huang, J.; Oveisi, E.; De Gregorio, G. L.; Mensi, M.; Strach, M.; Vavra, J.; Gadiyar, C.; Bhowmik, A.; Buonsanti, R. ACS Catal. 2019, 9, 5035.
[71]
Jeong, S.; Ohto, T.; Nishiuchi, T.; Nagata, Y.; Fujita, J. i.; Ito, Y. ACS Catal. 2021, 11, 9962.
[72]
Jiang, Z.; Wang, T.; Pei, J.; Shang, H.; Zhou, D.; Li, H.; Dong, J.; Wang, Y.; Cao, R.; Zhuang, Z.; Chen, W.; Wang, D.; Zhang, J.; Li, Y. Energy Environ. Sci. 2020, 13, 2856.
[73]
Wang, J.; Ning, S.; Luo, M.; Xiang, D.; Chen, W.; Kang, X.; Jiang, Z.; Chen, S. Appl. Catal. B: Environ. 2021, 288, 119979.
[74]
Yang, Q.; Wu, Q.; Liu, Y.; Luo, S.; Wu, X.; Zhao, X.; Zou, H.; Long, B.; Chen, W.; Liao, Y.; Li, L.; Shen, P. K.; Duan, L.; Quan, Z. Adv. Mater. 2020, 32, 2002822.
[75]
Bai, X.; Chen, W.; Zhao, C.; Li, S.; Song, Y.; Ge, R.; Wei, W.; Sun, Y. Angew. Chem., Int. Ed. 2017, 56, 12219.
[76]
Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. J. Am. Chem. Soc. 2018, 140, 2880.
[77]
Yuan, X.; Zhang, L.; Li, L.; Dong, H.; Chen, S.; Zhu, W.; Hu, C.; Deng, W.; Zhao, Z. J.; Gong, J. J. Am. Chem. Soc. 2019, 141, 4791.
[78]
An, X.; Li, S.; Yoshida, A.; Yu, T.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. ACS Appl. Mater. Inter. 2019, 11, 42114.
[79]
Wang, J.; Ji, Y.; Shao, Q.; Yin, R.; Guo, J.; Li, Y.; Huang, X. Nano Energy 2019, 59, 138.
[80]
Zhang, M.; Zhang, Z.; Zhao, Z.; Huang, H.; Anjum, D. H.; Wang, D.; He, J. H.; Huang, K. W. ACS Catal. 2021, 11, 11103.
[81]
Chen, C.; Sun, X.; Yan, X.; Wu, Y.; Liu, H.; Zhu, Q.; Bediako, B. B. A.; Han, B. Angew. Chem., Int. Ed. 2020, 59, 11123.
[82]
Wu, Z.; Wu, H.; Cai, W.; Wen, Z.; Jia, B.; Wang, L.; Jin, W.; Ma, T. Angew. Chem., Int. Ed. 2021, 60, 12554.
[83]
Ye, K.; Zhou, Z.; Shao, J.; Lin, L.; Gao, D.; Ta, N.; Si, R.; Wang, G.; Bao, X. Angew. Chem., Int. Ed. 2020, 59, 4814.
[84]
Li, D.; Huang, L.; Tian, Y.; Liu, T.; Zhen, L.; Feng, Y. Appl. Catal. B: Environ. 2021, 292, 120119.
[85]
Liang, C.; Kim, B.; Yang, S.; Yang, L.; Francisco, W.; Li, Z.; Vajtai, R.; Yang, W.; Wu, J.; Kenis, P.; Ajayan, P. J. Mater. Chem. A 2018, 6, 10313.
[86]
Zhang, X.; Sun, X.; Guo, S.; Bond, A.; Zhang, J. Energy Environ. Sci. 2019, 12, 1334.
[87]
Wei, F.; Wang, T.; Jiang, X.; Ai, Y.; Cui, A.; Cui, J.; Fu, J.; Cheng, J.; Lei, L.; Hou, Y.; Liu, S. Adv. Funct. Mater. 2020, 30, 2002092.
[88]
Fan, K.; Jia, Y.; Ji, Y.; Kuang, P.; Zhu, B.; Liu, X.; Yu, J. ACS Catal. 2019, 10, 358.
[89]
Yuan, L. P.; Jiang, W. J.; Liu, X. L.; He, Y. H.; He, C.; Tang, T.; Zhang, J.; Hu, J. S. ACS Catal. 2020, 10, 13227.
[90]
Zhang, S.; Sun, M.; Wang, K.; Cheng, L.; Zhang, S.; Wang, C. ACS Sustain. Chem. Eng. 2021, 9, 2358.
[91]
Lu, C.; Li, Z.; Xia, Z.; Ci, H.; Cai, J.; Song, Y.; Yu, L.; Yin, W.; Dou, S.; Sun, J.; Liu, Z. Nano Res. 2019, 12, 3051.
[92]
Bejtka, K.; Zeng, J.; Sacco, A.; Castellino, M.; Hernández, S.; Farkhondehfal, M. A.; Savino, U.; Ansaloni, S.; Pirri, C. F.; Chiodoni, A. ACS Appl. Energy Mater. 2019, 2, 3081.
[93]
Pardo Pérez, L. C.; Teschner, D.; Willinger, E.; Guiet, A.; Driess, M.; Strasser, P.; Fischer, A. Adv. Funct. Mater. 2021, 33, 2005113.
[94]
Li, L.; Zhao, Z. J.; Hu, C.; Yang, P.; Yuan, X.; Wang, Y.; Zhang, L.; Moskaleva, L.; Gong, J. ACS Energy Lett. 2020, 5, 552.
[95]
Li, Z.; Cao, A.; Zheng, Q.; Fu, Y.; Wang, T.; Arul, K. T.; Chen, J. L.; Yang, B.; Adli, N. M.; Lei, L.; Dong, C. L.; Xiao, J.; Wu, G.; Hou, Y. Adv. Mater. 2021, 33, 2005113.
[96]
Li, H.; Xiao, N.; Wang, Y.; Liu, C.; Zhang, S.; Zhang, H.; Bai, J.; Xiao, J.; Li, C.; Guo, Z.; Zhao, S.; Qiu, J. J. Mater. Chem. A 2020, 8, 1779.
[97]
Gao, S.; Jiao, X.; Sun, Z.; Zhang, W.; Sun, Y.; Wang, C.; Hu, Q.; Zu, X.; Yang, F.; Yang, S.; Liang, L.; Wu, J.; Xie, Y. Angew. Chem., Int. Ed. 2016, 55, 698.
[98]
Zou, J.; Lee, C. Y.; Wallace, G. G. Adv. Sci. 2021, 8, 2004521.
[99]
Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Nature 2016, 529, 68.
[100]
Chen, X.; Chen, H.; Zhou, W.; Zhang, Q.; Yang, Z.; Li, Z.; Yang, F.; Wang, D.; Ye, J.; Liu, L. Small 2021, 17, 2101128.
[101]
Tompkins, F. C. Nature 1960, 186, 3.
[102]
Jia, S.; Zhu, Q.; Chu, M.; Han, S.; Feng, R.; Zhai, J.; Xia, W.; He, M.; Wu, H.; Han, B. Angew. Chem., Int. Ed. 2021, 60, 10977.
[103]
Xie, W.; Li, H.; Cui, G.; Li, J.; Song, Y.; Li, S.; Zhang, X.; Lee, J. Y.; Shao, M.; Wei, M. Angew. Chem., Int. Ed. 2021, 60, 7382.
[104]
Kang, X.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W.; Han, B.; Yang, S.; Schroder, M. J. Am. Chem. Soc. 2020, 142, 17384.
[105]
Zhao, Y.; Liang, J.; Wang, C.; Ma, J.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1702524.
[106]
Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734.
[107]
Zhu, W.; Zhang, Y. J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2014, 136, 16132.
[108]
An, X.; Li, S.; Hao, X.; Xie, Z.; Du, X.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Renew. Sust. Energ. Rev. 2021, 143, 110952.
[109]
Wu, Y.; Chen, C.; Yan, X.; Sun, X.; Zhu, Q.; Li, P.; Li, Y.; Liu, S.; Ma, J.; Huang, Y.; Han, B. Angew. Chem., Int. Ed. 2021, 60, 20803.
[110]
Li, H.; Jiang, T. W.; Qin, X.; Chen, J.; Ma, X. Y.; Jiang, K.; Zhang, X. G.; Cai, W. B. ACS Catal. 2021, 11, 6846.
[111]
Li, M.; Ma, Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. Angew. Chem., Int. Ed. 2021, 60, 11487.
[112]
Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Adv. Energy Mater. 2019, 10, 1902338.
[113]
Huang, J. E.; Li, F.; Ozden, A.; Sedighian Rasouli, A.; Garcia de Arquer, F. P.; Liu, S.; Zhang, S.; Luo, M.; Wang, X.; Lum, Y.; Xu, Y.; Bertens, K.; Miao, R. K.; Dinh, C. T.; Sinton, D.; Sargent, E. H. Science 2021, 372, 1074.
文章导航

/