研究论文

两例新的镧系金属-有机框架化合物高效去除Cs+离子研究

  • 吕天天 ,
  • 马文 ,
  • 詹冬笋 ,
  • 邹燕敏 ,
  • 李继龙 ,
  • 冯美玲 ,
  • 黄小荥
展开
  • a 中北大学材料科学与工程学院 太原 030051
    b 中国科学院福建物质结构研究所 结构化学国家重点实验室 福州 350002
庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-31

  网络出版日期: 2022-01-24

基金资助

国家自然科学基金(U21A20296); 国家自然科学基金(22076185); 国家自然科学基金(21771183); 福建省自然科学基金(2020J06033)

Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions

  • Tiantian Lü ,
  • Wen Ma ,
  • Dongsun Zhan ,
  • Yanmin Zou ,
  • Jilong Li ,
  • Meiling Feng ,
  • Xiaoying Huang
Expand
  • a College of Material Science and Engineering, North University of China, Taiyuan 030051
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
*E-mail: ; Tel.: 0591-63173146; Fax: 0591-63173146.

Received date: 2021-12-31

  Online published: 2022-01-24

Supported by

National Natural Science Foundation of China(U21A20296); National Natural Science Foundation of China(22076185); National Natural Science Foundation of China(21771183); Natural Science Foundation of Fujian Province(2020J06033)

摘要

137Cs具有强放射性和较长半衰期, 一旦从核废液中泄露将对人类健康和环境造成很大危害. 由于137Cs+的高溶解性、易迁移性和废液中干扰离子的影响, 从复杂的放射性废液中有效去除137Cs+仍然是一个挑战. 本研究通过溶剂热法合成了两例新的三维微孔镧系金属-有机框架化合物(Me2NH2)0.5(H3O)0.25Na0.25Ln(OH)(stp)•0.25H2O (FJSM-LnMOF; Ln=Eu, Tb; H3stp=2-磺酸基对苯二甲酸), 它们具有良好的水稳定性和一定的耐酸碱性. FJSM-EuMOF和FJSM-TbMOF对Cs+离子吸附具有快速的动力学和高的吸附量(qmCs分别为229.25和211.28 mg/g). 它们对Cs+离子具有良好的选择性(KdCs值高达2.18×103 mL/g). 即使在Na+, K+, Mg2+, Ca2+离子干扰的情况下, 它们仍然表现出对Cs+离子的选择性吸附性能. 我们成功获得了Cs+吸附产物的单晶结构, 通过单晶结构分析结合X射线光电子能谱(XPS), 红外(IR), 扫描电镜能量色散谱(EDS)和元素分析(EA)等多种表征方法, 证实了FJSM-EuMOF对Cs+离子的吸附为离子交换的机理. 结果表明, FJSM-EuMOF对Cs+离子的高效吸附主要源于镧系金属-有机阴离子框架中有机配体上的 COO$\text{SO}_{3}^{}$官能团对Cs+离子强的作用力以及通道内存在易交换的[Me2NH2]+阳离子和[H3O]+离子. 这项工作表明, 镧系金属-有机框架化合物在放射性铯的修复中具有潜在的应用价值.

本文引用格式

吕天天 , 马文 , 詹冬笋 , 邹燕敏 , 李继龙 , 冯美玲 , 黄小荥 . 两例新的镧系金属-有机框架化合物高效去除Cs+离子研究[J]. 化学学报, 2022 , 80(5) : 640 -646 . DOI: 10.6023/A21120614

Abstract

137Cs has the strong radioactivity and long half-life. In the event of leaking, it will pose a great danger to human health and the environment. The effective removal of 137Cs+ from complex radioactive waste streams remains a challenge due to its high solubility, easy migration and the influence of interfering ions in the waste streams. In this study, two new three-dimensional microporous lanthanide metal-organic framework compounds (Me2NH2)0.5(H3O)0.25Na0.25Ln(OH)(stp)• 0.25H2O (FJSM-LnMOF; Ln=Eu, Tb; H3stp=2-sulfonic acid terephthalic acid) are synthesized by the solvothermal method, which have the good water stability and acid-base resistance. The adsorption performance of FJSM-LnMOFs for Cs+ are tested with solid-liquid ratio of 1∶1 under stirring at room temperature for 8 h. The adsorption kinetics of FJSM-EuMOF for Cs+ are tested with low-concentration Cs+ solution. FJSM-LnMOFs show fast kinetics and high adsorption capacities of Cs+ ions (the maximum adsorption capacities qmCs of FJSM-EuMOF and FJSM-TbMOF are 229.25 and 211.28 mg/g, respectively). They have good selectivity for Cs+ ions (KdCs value up to 2.18×103 mL/g). Even in the presence of interfering Na+, K+, Mg2+, Ca2+ ions, they still show selective adsorption performance for Cs+ ions. Impressively, we successfully obtain the single crystal structure of Cs+-absorbed product by soaking FJSM-EuMOF crystals in 20,000 mg/L Cs+ solution, which confirms that the adsorption mechanism of Cs+ ions is ion exchange by the means of single crystal structure analysis combined with various characterization methods including X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), energy dispersion spectrum (EDS), elemental analysis (EA). The results indicate that the highly efficient Cs+ adsorption of FJSM-LnMOF mainly originates from the strong interactions between COO and $\text{SO}_{3}^{}$ functional groups from organic ligands and Cs+ ions, and the presence of easily exchangeable [Me2NH2]+ cations and [H3O]+ located in the channels. This work indicates the potential application of lanthanide metal-organic frameworks in the remediation of radioactive cesium.

参考文献

[1]
Wang, N.; Pang, H. W.; Yu, S. J.; Gu, P. C.; Song, S.; Wang, H. Q.; Wang, X. K. Acta Chim. Sinica 2019, 77, 143. (in Chinese)
[1]
(王宁, 庞宏伟, 于淑君, 顾鹏程, 宋爽, 王宏青, 王祥科, 化学学报, 2019, 77, 143.)
[2]
Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y. T. Water 2011, 3, 551.
[3]
Smith, J. T.; Wright, S. M.; Cross, M. A.; Monte, L.; Kudelsky, A. V.; Saxen, R.; Vakulovsky, S. M.; Timms, D. N. Environ. Sci. Technol. 2004, 38, 850.
[4]
Ivanov, Y. A.; Lewyckyj, N.; Levchuk, S. E.; Prister, B. S.; Firsakova, S. K.; Arkhipov, N. P.; Arkhipov, A. N.; Kruglov, S. V.; Alexakhin, R. M.; Sandalls, J.; Askbrant, S. J. Environ. Radioact. 1997, 35, 1.
[5]
Namiki, Y.; Namiki, T.; Ishii, Y.; Koido, S.; Nagase, Y.; Tsubota, A.; Tada, N.; Kitamoto, Y. Pharm. Res. 2012, 29, 1404.
[6]
Li, G. D.; Ji, G. X.; Sun, X. L.; Du, W.; Liu, W.; Wang, S. A. J. Inorg. Mater. 2019, 35, 367. (in Chinese)
[6]
(李国东, 姬国勋, 孙新利, 杜伟, 刘伟, 王殳凹, 无机材料学报, 2019, 35, 367.)
[7]
Buesseler, K.; Aoyama, M.; Fukasawa, M. Environ. Sci. Technol. 2011, 45, 9931.
[8]
Shakir, K.; Sohsah, M.; Soliman, M. Sep. Purif. Technol. 2007, 54, 373.
[9]
Wang, J. L.; Zhuang, S. T. Rev. Environ. Sci. Biotechnol. 2019, 18, 231.
[10]
Sinha, P. K.; Panicker, P. K.; Amalraj, R. V.; Krishnasamy, V. Waste Manage. (Oxford) 1995, 15, 149.
[11]
Ding, D. H.; Lei, Z. F.; Yang, Y. N.; Zhang, Z. Y. Chem. Eng. J. 2014, 236, 17.
[12]
Kim, T. Y.; An, S. S.; Shim, W. G.; Lee, J. W.; Cho, S. Y.; Kim, J. H. J. Ind. Eng. Chem. 2015, 27, 260.
[13]
Yu, S. J.; Tang, H.; Zhang, D.; Wang, S. Q.; Qiu, M. Q.; Song, G.; Fu, D.; Hu, B. W.; Wang, X. K. Sci. Total Environ. 2022, 811, 152280.
[14]
Wang, X. X.; Chen, L.; Wang, L.; Fan, Q. H.; Pan, D. Q.; Li, J. X.; Chi, F. T.; Xie, Y.; Yu, S. J.; Xiao, C. L.; Luo, F.; Wang, J.; Wang, X. L.; Chen, C. L.; Wu, W. S.; Shi, W. Q.; Wang, S.; Wang, X. K. Sci. China Chem. 2019, 62, 933.
[15]
Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayat, T.; Wang, X. K. Chem. Soc. Rev. 2018, 47, 2322.
[16]
Lysova, A. A.; Samsonenko, D. G.; Dorovatovskii, P. V.; Lazarenko, V. A.; Khrustalev, V. N.; Kovalenko, K. A.; Dybtsev, D. N.; Fedin, V. P. J. Am. Chem. Soc. 2019, 141, 17260.
[17]
Dai, M.; Wang, J.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y. Acta Chim. Sinica 2020, 78, 355. (in Chinese)
[17]
(代迷迷, 王健, 李麟阁, 王琪, 刘美男, 张跃钢, 化学学报, 2020, 78, 355.)
[18]
Guo, C.; Ma, X.; Wang, B. Acta Chim. Sinica 2021, 79, 967. (in Chinese)
[18]
郭彩霞, 马小杰, 王博, 化学学报, 2021, 79, 967.)
[19]
Lü, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[19]
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
[20]
Jin, K.; Lee, B.; Park, J. Coord. Chem. Rev. 2021, 427, 213473.
[21]
Patra, K.; Ansari, S. A.; Mohapatra, P. K. J. Chromatogr. A 2021, 1655, 462491.
[22]
Wang, Y.; Liu, Z.; Li, Y.; Bai, Z.; Liu, W.; Wang, Y.; Xu, X.; Xiao, C.; Sheng, D.; Juan, D.; Su, J.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. J. Am. Chem. Soc. 2015, 137, 6144.
[23]
Liu, X. L.; Pang, H. W.; Liu, X. W.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M. Q.; Hu, B. W.; Yang, H.; Wang, X. K. Innovation 2021, 2, 100076.
[24]
Zhang, N.; Yuan, L. Y.; Guo, W. L.; Luo, S. Z.; Chai, Z. F.; Shi, W. Q. ACS Appl. Mater. Interfaces 2017, 9, 25216.
[25]
Feng, Y. F.; Jiang, H.; Li, S. N.; Wang, J.; Jing, X. Y.; Wang, Y. R.; Chen, M. Colloids Surf., A 2013, 431, 87.
[26]
Rapti, S.; Sarma, D.; Diamantis, S. A.; Skliri, E.; Armatas, G. S.; Tsipis, A. C.; Hassan, Y. S.; Alkordi, M.; Malliakas, C. D.; Kanatzidis, M. G.; Lazarides, T.; Plakatouras, J. C.; Manos, M. J. J. Mater. Chem. A 2017, 5, 14707.
[27]
Aguila, B.; Banerjee, D.; Nie, Z. M.; Shin, Y.; Ma, S. Q.; Thallapally, P. K. Chem. Commun. 2016, 52, 5940.
[28]
Gao, Y. J.; Feng, M. L.; Zhang, B.; Wu, Z. F.; Song, Y.; Huang, X. Y. J. Mater. Chem. A 2018, 6, 3967.
[29]
Feng, M. L.; Sarma, D.; Gao, Y. J.; Qi, X. H.; Li, W. A.; Huang, X. Y.; Kanatzidis, M. G. J. Am. Chem. Soc. 2018, 140, 11133.
[30]
Tang, J. H.; Sun, H. Y.; Ma, W.; Feng, M. L.; Huang, X. Y. Chin. J. Struct. Chem. 2020, 39, 2157.
[31]
Feng, M. L.; Sarma, D.; Qi, X. H.; Du, K. Z.; Huang, X. Y.; Kanatzidis, M. G. J. Am. Chem. Soc. 2016, 138, 12578.
[32]
Feng, M. L.; Wang, K. Y.; Huang, X. Y. Chem. Rec. 2016, 16, 582.
[33]
Qi, X. H.; Du, K. Z.; Feng, M. L.; Li, J. R.; Du, C. F.; Zhang, B.; Huang, X. Y. J. Mater. Chem. A 2015, 3, 5665.
[34]
Zeng, X.; Liu, Y.; Zhang, T.; Jin, J. C.; Li, J. L.; Sun, Q.; Ai, Y. J.; Feng, M. L.; Huang, X. Y. Chem. Eng. J. 2021, 420.
[35]
Liao, Y. Y.; Li, J. R.; Zhang, B.; Sun, H. Y.; Ma, W.; Jin, J. C.; Feng, M. L.; Huang, X. Y. ACS Appl. Mater. Interfaces 2021, 13, 5275.
[36]
Li, W. A.; Li, J. R.; Zhang, B.; Sun, H. Y.; Jin, J. C.; Huang, X. Y.; Feng, M. L. ACS Appl. Mater. Interfaces 2021, 13, 10191.
[37]
Li, J.; Jin, J.; Zou, Y.; Sun, H.; Zeng, X.; Huang, X.; Feng, M.; Kanatzidis, M. G. ACS Appl. Mater. Interfaces 2021, 13, 13434.
[38]
Sun, H. Y.; Liu, Y.; Lin, J.; Yue, Z. H.; Li, W. A.; Jin, J. C.; Sun, Q.; Ai, Y. J.; Feng, M. L.; Huang, X. Y. Angew. Chem., Int. Ed. 2020, 59, 1878.
[39]
El-Kamash, A. M. J. Hazard. Mater. 2008, 151, 432.
[40]
Mertz, J. L.; Fard, Z. H.; Malliakas, C. D.; Manos, M. J.; Kanatzidis, M. G. Chem. Mater. 2013, 25, 2116.
[41]
Ali, I. M.; Zakaria, E. S.; Aly, H. F. J. Radioanal. Nucl. Chem. 2010, 285, 483.
[42]
Datta, S. J.; Moon, W. K.; Choi, D. Y.; Hwang, I. C.; Yoon, K. B. Angew. Chem., Int. Ed. 2014, 53, 7203.
[43]
Park, Y.; Lee, Y. C.; Shin, W. S.; Choi, S. J. Chem. Eng. J. 2010, 162, 685.
[44]
Naeimi, S.; Faghihian, H. Sep. Purif. Technol. 2017, 175, 255.
[45]
He, J.; Ma, P. F.; Wang, Y.; Li, R. H.; Yuan, X. Q.; Zhang, L. J. Non-Cryst. Solids 2016, 431, 130.
文章导航

/