研究论文

水溶性IR-780聚合物用于线粒体靶向的光动力治疗

  • 李嫣然 ,
  • 王子贵 ,
  • 汤朝晖
展开
  • a 中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
    b 中国科学院长春应用化学研究所 高分子物理与化学重点实验室 长春 130022
    c 中国科学技术大学 应用化学与工程学院 合肥 230026
庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-03

  网络出版日期: 2022-01-07

基金资助

国家自然科学基金(52025035); 国家自然科学基金(51873206)

Water Soluble IR-780 Polymer for Mitochondria-Targeted Photodynamic Therapy

  • Yanran Li ,
  • Zigui Wang ,
  • Zhaohui Tang
Expand
  • a Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, Changchun 130022
    b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, Changchun 130022
    c College of Applied Chemistry and Engineering, University of Science and Technology of China, Heifei 230026
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-03

  Online published: 2022-01-07

Supported by

National Natural Science Foundation of China(52025035); National Natural Science Foundation of China(51873206)

摘要

11-氯-1,1'-二正丙基-3,3,3',3'-四甲基-10,12-三亚甲基吲哚三碳花青碘盐(IR-780)被具有较强组织穿透能力的近红外光照射后, 能快速高效地产生活性氧, 导致细胞死亡, 可用于光动力治疗. 但是IR-780的水溶性差, 这极大限制了其生物医学应用. 基于此我们设计合成了可高效靶向线粒体的水溶性IR-780聚合物Poly-IR, Poly-IR在水中自组装成为纳米粒子. Poly-IR纳米粒子受近红外光激活后, 在肿瘤细胞内外均能快速高效地产生活性氧, 并且该纳米粒子能够在线粒体中富集, 受近红外光的激发后产生的活性氧能够破坏线粒体, 导致线粒体膜电位降低. 细胞毒性、活死细胞染色及凋亡实验结果也进一步证明, 该纳米粒子在近红外光照下能够有效地抑制肿瘤细胞的增殖. 本体系为靶向线粒体的光动力治疗肿瘤领域拓展了思路.

本文引用格式

李嫣然 , 王子贵 , 汤朝晖 . 水溶性IR-780聚合物用于线粒体靶向的光动力治疗[J]. 化学学报, 2022 , 80(3) : 291 -296 . DOI: 10.6023/A21120544

Abstract

11-Chloro-1,1'-di-n-propyl-3,3,3',3'-tetramethyl-10,12-trimethyleneindatricarbocyanine iodide (IR-780) is a near infrared (NIR) photosensitizer for cancer treatment. Under NIR irradiation, IR-780 efficiently generates singlet oxygen or other reactive oxygen species (ROS) in lesion position that ultimately cause cell apoptosis and necrosis. However, biomedical application of IR-780 was limited by its poor water solubility. In this work, we designed a water-soluble IR-780 polymer (Poly-IR) for mitochondria-targeted photodynamic therapy via condensation polymerization. The results of dynamic light scattering (DLS) and transmission electron microscope (TEM) displayed that Poly-IR was self-assembled into nanoparticles in water. And ROS detection experiments demonstrated that Poly-IR quickly and efficiently generated ROS under NIR irradiation in solution and cells. The cellular distribution of the Poly-IR was monitored by confocal laser scanning microscopy (CLSM). Colocalization experiments with mitochondrial stain revealed a high degree of colocalization between Poly-IR and mitochondria, which illustrated that Poly-IR selectively accumulated in mitochondria. Furthermore, we explored the photodamages of Poly-IR to mitochondria through monitoring the change of mitochondrial membrane potential that was stained by JC-1 probe. In the dark, red fluorescence emerged with Poly-IR treated A549 cells. Under NIR irradiation, the red fluorescence was disappeared and green fluorescence was generated in Poly-IR treated cells, which confirmed the photodamage of Poly-IR to mitochondria. The cytotoxicity of Poly-IR was measured by MTT assay (MTT=3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide). The IC50 values of Poly-IR for A549 cells and MCF-7 cells were 9.13 and 10.98 μg/mL respectively in the dark. At the same time, the IC50 values of Poly-IR for A549 cells and MCF-7 cells were 4.57 and 0.22 μg/mL respectively under NIR irradiation. The cytotoxicity of Poly-IR for MCF-7 cells treated with NIR exposure was significantly increased 50 times compared to without irradiation. Live/dead cell staining experiments also verified that Poly-IR had more phototoxicity. Meanwhile, cytotoxicity on tumor cells was also detected by flow cytometry apoptosis assay according to the typical Annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) double staining principle. These results suggested that Poly-IR promoted tumor cells apoptosis under near-IR irradiation, which expanded ideas in mi-tochondria-targeted photodynamic therapy in cancer treatment.

参考文献

[1]
Li, X.; Lovell, J. F.; Yoon, J.; Chen, X. Nat. Rev. Clin. Oncol. 2020, 17, 657.
[2]
Liu, C.-H.; Cao, Y.; Cheng, Y.-R.; Wang, D.-D.; Xu, T.-L.; Su, L.; Zhang, X.-J.; Dong, H.-F. Nat. Commun. 2020, 11, 1735.
[3]
Wang, T.; Zhao, L.; Wang, K.-W.; Bai, Y.-F.; Feng, F. Acta Chim. Sinica 2021, 79, 600. (in Chinese)
[3]
(王涛, 赵璐, 王科伟, 白云峰, 冯锋, 化学学报, 2021, 79, 600.)
[4]
Lismont, M.; Dreesen, L.; Wuttke, S. Adv. Funct. Mater. 2017, 27, 1606314.
[5]
Yan, T.; Liu, Z.-H.; Song, X.-Y.; Zhang, S.-S. Acta Chim. Sinica 2020, 78, 657. (in Chinese)
[5]
(闫涛, 刘振华, 宋昕玥, 张书圣, 化学学报, 2020, 78, 657.)
[6]
Huang, J.; Li, Z.; Liu, Z.-H. Acta Chim. Sinica 2021, 79, 1049. (in Chinese)
[6]
(黄菊, 李贞, 刘志洪, 化学学报, 2021, 79, 1049.)
[7]
Lo, P.-C.; Rodriguez-Morgade, M. S.; Pandey, R. K.; Ng, D. K. P.; Torres, T.; Dumoulin, F. Chem. Soc. Rev. 2020, 49, 1041.
[8]
Xie, J.-L.; Wang, Y.-W.; Choi, W.; Jangili, P.; Ge, Y.-Q.; Xu, Y.-J.; Kang, J.-L.; Liu, L.-Q.; Zhang, B.; Xie, Z.-J.; He, J.; Xie, N.; Nie, G.-H.; Zhang, H.; Kim, J. S. Chem. Soc. Rev. 2021, 50, 9152.
[9]
Cai, Z.; Zhang, Y.-W.; Jiang, L.-P.; Zhu, J.-J. Acta Chim. Sinica 2021, 79, 481. (in Chinese)
[9]
(蔡政, 张颖雯, 姜立萍, 朱俊杰, 化学学报, 2021, 79, 481.)
[10]
Lucky, S.-S.; Soo, K.-C.; Zhang, Y. Chem. Rev. 2015, 115, 1990.
[11]
Xiong, H.-J.; Zhou, D.-F.; Zheng, X.-H.; Qi, Y.-X.; Wang, Y.-H.; Jing, X.-B.; Huang, Y.-B. Chem. Commun. 2017, 53, 3422.
[12]
Qin, Y.-B.; Yang, P.-X.; Shi, S.-B.; Sun, H.-F.; Zhang, C.-N.; Kong, D.-L. Acta Polymerica Sinica 2018, 7, 909. (in Chinese)
[12]
(秦怡博, 杨鹏翔, 时圣彬, 孙洪范, 张闯年, 孔德领, 高分子学报, 2018, 7, 909.)
[13]
Wang, R.; Li, X.-S.; Yoon, J. ACS Appl. Mater. Interfaces 2021, 13, 19543.
[14]
Rustin, P. Nat. Genet. 2002, 30, 352.
[15]
Yang, Z.-G.; Xiong, J.; Zhang, W.; Li, W.; Pan, W.-H.; Zhang, J.-G.; Gu, Z.-Y.; Huang, M.-N.; Qu, J.-L. Acta Chim. Sinica 2020, 78, 130. (in Chinese)
[15]
(杨志刚, 熊佳, 张炜, 李文, 潘文慧, 张建国, 顾振宇, 黄美娜, 屈军乐, 化学学报 2020, 78, 130.)
[16]
Marrache, S.; Pathak, R. K.; Dhar, S. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 10444.
[17]
Wang, K.; Zhu, C.-C.; He, Y.-F.; Zhang, Z.-Q.; Zhou, W.; Muhammad, N.; Guo, Y.; Wang, X.-Y.; Guo, Z.-J. Angew. Chem. Int. Ed. 2019, 58, 4638.
[18]
Li, X.-Z.; Wu, J.-G.; Wang, L.; He, C.; Chen, L.-Y.; Jiao, Y.; Duan, C.-Y. Angew. Chem., Int. Ed. 2020, 59, 6420.
[19]
Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H.-R.; Liu, S.-J.; Xu, A.-Q.; Guo, S.; Zhao, Q.; Huang, W. Angew. Chem., Int. Ed. 2016, 55, 9947.
[20]
Han, K.; Lei, Q.; Wang, S.-B.; Hu, J.-J.; Qiu, W.-X.; Zhu, J.-Y.; Yin, W.-N.; Luo, X.; Zhang, X.-Z. Adv. Funct. Mater. 2015, 25, 2961.
[21]
Jiang, C.-X.; Cheng, H.; Yuan, A.-H.; Tang, X.-L.; Wu, J.-H.; Hu, Y.-Q. Acta Biomater. 2015, 14, 61.
[22]
Mitra, K.; Lyons, C. E.; Hartman, M. C. T. Angew. Chem., Int. Ed. 2018, 57, 10263.
[23]
Zhu, H.-J.; Li, J.-C.; Qi, X.-Y.; Chen, P.; Pu, K.-Y. Nano Lett. 2018, 18, 586.
[24]
Thomas, A. P.; Palanikumar, L.; Jeena, M. T.; Kim, K.; Ryu, J. H. Chem. Sci. 2017, 8, 8351.
[25]
Sun, J.; Du, K.; Diao, J.-J.; Cai, X.-T.; Feng, F.-D.; Wang, S. Angew. Chem., Int. Ed. 2020, 59, 12122.
[26]
Zhang, Q.-F.; Kuang, G.-Z.; He, S.-S.; Lu, H.-T.; Cheng, Y.-L.; Zhou, D.-F.; Huang, Y.-B. Nano Lett. 2020, 20, 3039.
[27]
Yang, G.-L.; Tian, J.; Chen, C.; Jiang, D.-W.; Xue, Y.-D.; Wang, C.-C.; Gao, Y.; Zhang, W.-A. Chem. Sci. 2019, 10, 5766.
文章导航

/