研究通讯

钯催化硼-碳和硼-杂原子键构建一锅法合成双官能团化邻-碳硼烷

  • 葛懿修 ,
  • 邱早早 ,
  • 谢作伟
展开
  • a 中国科学院上海有机化学研究所沪港化学合成联合实验室 上海 200032
    b 香港中文大学化学系 中国香港
庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-29

  网络出版日期: 2022-02-07

基金资助

国家自然科学基金(92056106); 香港研究资助局(14305018)

Pd-Catalyzed One-Pot Synthesis of Difunctionalized o-Carboranes via Construction of B—C and B—Heteroatom Bonds

  • Yixiu Ge ,
  • Zaozao Qiu ,
  • Zuowei Xie
Expand
  • a Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    b Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-29

  Online published: 2022-02-07

Supported by

National Natural Science Foundation of China(92056106); Hong Kong Research Grants Council(14305018)

摘要

碳硼烷是由碳氢和硼氢顶点组成的笼状分子, 在医药、能源和材料等领域有着重要应用, 但目前在碳硼烷硼顶点引入杂原子取代基的方法还较为有限. 基于此, 本工作从3-碘-邻-碳硼烷出发, 通过钯催化烯基化、金属迁移及后续与杂原子亲核试剂的偶联反应, 一锅法构筑硼碳键和硼杂原子键, 成功实现了一系列新型3-烯基-4-胺基/烷氧基/烷(芳)硫基-邻-碳硼烷衍生物的合成.

本文引用格式

葛懿修 , 邱早早 , 谢作伟 . 钯催化硼-碳和硼-杂原子键构建一锅法合成双官能团化邻-碳硼烷[J]. 化学学报, 2022 , 80(4) : 432 -437 . DOI: 10.6023/A21120597

Abstract

Icosahedral carboranes are carbon-boron molecular clusters, sharing many features with benzene such as aromaticity, high thermal and chemical stability. On the other hand, carboranes have their own unique characteristics like spherical geometry and three-dimensional electronic delocalization. These properties render carboranes unique building blocks for various applications ranging from versatile ligands to functional materials to medicine. In this regard, functionalization of carboranes, particularly regioselective functionalization of cage B-vertexes has recently received much attention. Based on our recently developed Pd-catalyzed iodine-migration on o-carborane cage, a Pd-catalyzed regioselective difunctionalization of 3-iodo-o-carborane in a one-pot manner has been achieved to afford a series of 3-alkenyl-4-Nu-o-carboranes (Nu=arylamino, alkoxyl, alkyl and arylthio) in 47%~99% yields. This protocol combines the sequential activation of cage B(3)—I and B(4)—H bonds by Pd migration, as well as further Pd-catalyzed transformation of B(4)—I bond, leading to the construction of B—C and B—Heteroatom bonds. A general procedure for the synthesis of 3-alkenyl-4-Nu-o-carboranes is described as follows: to a tetrahydrofuran (THF) solution (1 mL) of NuH (1.0 mmol) was added base (1.0 mmol) at 0 ℃ under an atmosphere of dry nitrogen. The reaction mixture was stirred for another 10 min to obtain the NuM solution (NuM=ArNHMgBr, base=EtMgBr; NuM=Ar2NLi, base=nBuLi). Another oven-dried Schlenk flask equipped with a stir bar was charged with 3-iodo-o-carborane (1, 27 mg, 0.1 mmol), Pd(PPh3)4 (12 mg, 0.01 mmol), diphenylacetylene (89 mg, 0.5 mmol) and dry toluene (1 mL) under an atmosphere of dry nitrogen. The flask was closed, and stirred at 80 ℃ for 72 h. Then, the resulting solution was cooled to 0 ℃, to which was slowly added NuM (0.15 mmol) (NuM=ArNHMgBr, Ar2NLi, tBuONa and RSNa). The reaction mixture was warmed to room temperature, and stirred at 80 ℃ for 24 h. After quenching with water (1 mL) and extraction with ethyl acetate (5 mL×3), the organic portions were combined and concentrated to dryness in vacuo. The residue was subjected to flash column chromatography on silica gel (300~400 mesh) using n-hexane as eluent to give the product.

参考文献

[1]
Carboranes, 3rd ed., Ed.: Grimes, R. N., Elsevier, Oxford, U. K., 2016.
[2]
For selected reviews in applications in medicine, see: (a) Hawthorne, M. F.; Maderna, A. Chem. Rev. 1999, 99, 3421.
[2]
(b) Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.
[2]
(c) Stockmann, P.; Gozzi, M.; Kuhnert, R.; Sárosi, M. B.; Hey-Hawkins, E. Chem. Soc. Rev. 2019, 48, 3497.
[3]
(a) Yang, X.; Jiang, W.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1992, 114, 9719.
[3]
(b) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131.
[3]
(c) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science 2007, 316, 853.
[3]
(d) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hosmane, N. S. J. Am. Chem. Soc. 2010, 132, 6578.
[3]
(e) Bauduin, P.; Prevost, S.; Farràs, P.; Teixidor, F.; Diat, O.; Zemb, T. Angew. Chem., Int. Ed. 2011, 50, 5298.
[3]
(f) Cioran, A. M.; Musteti, A. D.; Teixidor, F.; Krpetić, Z?.; Prior, I. A.; He, Q.; Kiely, C. J.; Brust, M.; Viñas, C. J. Am. Chem. Soc. 2012, 134, 212.
[3]
(g) Brusselle, D.; Bauduin, P.; Girard, L.; Zaulet, A.; Viñas, C.; Teixidor, F.; Ly, I.; Diat, O. Angew. Chem., Int. Ed. 2013, 52, 12114.
[3]
(h) Schwartz, J. J.; Mendoza, M. A.; Wattanatorn, N.; Zhao, Y.; Nguyen, V. T.; Spokoyny, A. M.; Mirkin, C. A.; Baše, T.; Weiss, P. S. J. Am. Chem. Soc. 2016, 138, 5957.
[3]
(i) Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser, J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V. Chem. Rev. 2019, 119, 8262.
[3]
(j) Cui, P.-F.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2020, 142, 8532.
[3]
(k) Cui, P.-F.; Liu, X.-R.; Guo, S.-T.; Lin, Y.-J.; Jin, G.-X. J. Am. Chem. Soc. 2021, 143, 5099.
[4]
(a) Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; de Biani, F. F.; Teixidor, F. Chem. Rev. 2016, 116, 14307.
[4]
(b) Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser, J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V. Chem. Rev. 2019, 119, 8262.
[4]
(c) Keener, M.; Hunt, C.; Carroll, T. G.; Kampel, V.; Dobrovetsky, R.; Hayton, T. W.; Ménard, G. Nature 2020, 577, 652.
[4]
(d) Jung, D.; Saleh, L. M. A.; Berkson, Z. J.; El-Kady, M. F.; Hwang, J. Y.; Mohamed, N.; Wixtrom, A. I.; Titarenko, E.; Shao, Y.; McCarthy, K.; Guo, J.; Martini, I. B.; Kraemer, S.; Wegener, E. C.; Saint-Cricq, P.; Ruehle, B.; Langeslay, R. R.; Delferro, M.; Brosmer, J. L.; Hendon, C. H.; Gallagher-Jones, M.; Rodriguez, J.; Chapman, K. W.; Miller, J. T.; Duan, X.; Kaner, R. B.; Zink, J. I.; Chmelka, B. F.; Spokoyny, A. M. Nat. Mater. 2018, 17, 341.
[4]
(e) Nu?n?ez, R.; Romero, I.; Teixidor, F.; Vin?as, C. Chem. Soc. Rev. 2016, 45, 5147.
[4]
(f) Mukherjee, S.; Thilagar, P. Chem. Commun. 2016, 52, 1070.
[4]
(g) Wei, X.; Zhu, M.-J.; Cheng, Z.; Lee, M.; Yan, H.; Lu, C.; Xu, J.-J. Angew. Chem., Int. Ed. 2019, 58, 3162.
[5]
For selected reviews in applications in organometallic/coordination chemistry, see: (a) Xie, Z.. Coord. Chem. Rev. 2002, 231, 23.
[5]
(b) Yao, Z.-J.; Jin, G.-X. Coord. Chem. Rev. 2013, 257, 2522.
[5]
(c) Fisher, S. P.; Tomich, A. W.; Guo, J.; Lavallo, V. Chem. Commun. 2019, 55, 1684.
[6]
(a) Grimes, R. N. Dalton Trans. 2015, 44, 5939.
[6]
(b) Olid, D.; Núñez, R.; Viñas, C.; Teixidor, F. Chem. Soc. Rev. 2013, 42, 3318.
[6]
(c) Dziedzic, R. M.; Spokoyny, A. M. Chem. Commun. 2019, 55, 430.
[6]
(d) Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.
[6]
(e) Zhao, D.; Xie, Z. Coord. Chem. Rev. 2016, 314, 14.
[6]
(f) Zhang, X.; Yan, H. Coord. Chem. Rev. 2019, 378, 466.
[6]
(g) Mu, W.; Cheng, R.; Shang, Y.; He, R.; Li, D.; Fu, M. Chin. J. Org. Chem. 2018, 38, 1327. (in Chinese)
[6]
(母伟花, 程瑞姣, 尚英伟, 贺仁泽, 李冬丽, 傅冕, 有机化学, 2018, 38, 1327.)
[6]
(h) Xu, X.; Cheng, R.; Qiu, Z.; Pan, C. Chin. J. Org. Chem. 2018, 38, 3078. (in Chinese)
[6]
(许新彬, 程若飞, 邱早早, 潘成岭, 2018, 38, 3078.)
[6]
(i) Mu, W.; Ma, Y.; Fang, D.; Wang, R.; Zhang, H. Acta Chim. Sinica 2018, 76, 55. (in Chinese)
[6]
(母伟花, 马瑶, 方德彩, 王蓉, 张海娜, 化学学报, 2018, 76, 55.)
[7]
(a) Zakharkin, L. I.; Stanko, V. I.; Brattstev, V. A.; Chapovskii, Y. A.; Struchkov, Y. T. Russ. Chem. Bull. 1963, 12, 1911.
[7]
(b) Zakharkin, L. I.; Stanko, V. I.; Brattsev, V. A.; Chapovskii, Y. A.; Okhlobystin, O. Y. Russ. Chem. Bull. 1963, 12, 2074.
[7]
(c) Heying, T. L.; Ager, J. W.; Clark, S. L.; Mangold, D. J.; Goldstein, H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. Inorg. Chem. 1963, 2, 1089.
[7]
(d) Fein, M. M.; Bobinski, J.; Mayes, N.; Schwartz, N.; Cohen, M. S. Inorg. Chem. 1963, 2, 1111.
[8]
(a) Quan, Y.; Qiu, Z.; Xie, Z. Chem. Eur. J. 2018, 24, 2795.
[8]
(b) Quan, Y.; Xie, Z. Chem. Soc. Rev. 2019, 48, 3660.
[8]
(c) Au, Y. K.; Xie, Z. Bull. Chem. Soc. Jpn. 2021, 94, 879.
[8]
(d) Qiu, Z.; Xie, Z. Acc. Chem. Res. 2021, 54, 4065.
[8]
(e) Lian, L.; Yin, J.; Lin, C.; Ye, K.; Yuan, Y. Chin. J. Org. Chem. 2021, 41, 3249. (in Chinese)
[8]
(连凌翔, 尹静怡, 林彩霞, 叶克印, 袁耀锋, 有机化学, 2021, 41, 3249.)
[8]
(f) Zhang, H.; Qiu, Z.; Xie, Z. Chin. J. Org. Chem. 2020, 40, 3203. (in Chinese)
[8]
(张慧芳, 邱早早, 谢作伟, 有机化学, 2020, 40, 3203.)
[8]
(g) Liu, X.-R.; Cui, P.-F.; Guo, S.-T.; Yuan, R.-Z.; Jin, G.-X. Inorg. Chem. Front. 2021, 8, 4349.
[9]
Zhang, Z.-Y.; Zhang, X.; Yuan, J.; Yue, C.-D.; Meng, S.; Chen, J.; Yu, G.-A.; Che, C.-M. Chem. Eur. J. 2020, 26, 5037.
[10]
Cheng, R.; Qiu, Z.; Xie, Z. Nat. Commun. 2017, 8, 14827.
[11]
(a) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 11840.
[11]
(b) Guo, S.-T.; Cui, P.-F.; Yuan, R.-Z.; Jin, G.-X. Chem. Commun. 2021, 57, 2412.
[12]
(a) Li, C.-X.; Zhang, H.-Y.; Wong, T.-Y.; Cao, H.-J.; Yan, H.; Lu, C.-S. Org. Lett. 2017, 19, 5178.
[12]
(b) Cao, K.; Xu, T.-T.; Wu, J.; Jiang, L.; Yang, J. Chem. Commun. 2016, 52, 11446.
[13]
(a) Dziedzic, R. M.; Martin, J. L.; Axtell, J. C.; Saleh, L. M. A.; Ong, T.-C.; Yang, Y.-F.; Messina, M. S.; Rheingold, A. L.; Houk, K. N.; Spokoyny, A. M. J. Am. Chem. Soc. 2017, 139, 7729.
[13]
(b) Cui, C. X.; Zhang, J.; Qiu, Z.; Xie, Z. Dalton Trans. 2020, 49, 1380.
[13]
(c) Au, Y. K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2020, 142, 6940.
[14]
(a) Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.
[14]
(b) Au, Y. K.; Zhang, J.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2021, 143, 4148.
[15]
(a) Han, G. U.; Baek, Y.; Lee, K.; Shin, S.; Chan Noh, H.; Lee, P. H. Org. Lett. 2021, 23, 416.
[15]
(b) Baek, Y.; Kim, S.; Son, J.-Y.; Lee, K.; Kim, D.; Lee, P. H. ACS Catal. 2019, 9, 10418.
[16]
Chen, Y.; Quan, Y.; Xie, Z. Chem. Commun. 2020, 56, 12997.
[17]
(a) Au, Y. K.; Lyu, H.; Quan, Y.; Xie, Z. Chin. J. Chem. 2020, 38, 383.
[17]
(b) Au, Y. K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 12855.
[17]
(c) Cheng, B.; Chen, Y.; Zhou, P.; Xie, Z. Chem. Commun. 2022, DOI: 10.1039/D1CC05936J.
[17]
(d) Cao, H.-J.; Chen, M.; Sun, F.; Zhao, Y.; Lu, C.; Zhang, X.; Shi, Z.; Yan, H. ACS Catal. 2021, 11, 14047.
[18]
(a) Li, J.; Logan, C. F.; Jones, M. Inorg. Chem. 1991, 30, 4866.
[18]
(b) Viñas, C.; Barberà, G.; Oliva, J. M.; Teixidor, F.; Welch, A. J.; Rosair, G. M. Inorg. Chem. 2001, 40, 6555.
[19]
Sevryugina, Y.; Julius, R.; Hawthorne, M. F. Inorg. Chem. 2010, 49, 10627.
[20]
Dziedzic, R. M.; Saleh, L. M. A.; Axtell, J. C.; Martin, J. L.; Stevens, S. L.; Timothy Royappa, A.; Rheingold, A. L.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 9081.
[21]
Kabytaev, K. Z.; Everett, T. A.; Safronov, A. V.; Sevryugina, Y. V.; Jalisatgi, S. S.; Hawthorne, M. F. Eur. J. Inorg. Chem. 2013, 2488.
[22]
(a) Liu, D.; Dang, L.; Sun, Y.; Chan, H.-S.; Lin, Z.; Xie, Z. J. Am. Chem. Soc. 2008, 130, 16103.
[22]
(b) Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. Chem. Sci. 2017, 8, 5399.
[22]
(c) Dziedzic, R. M.; Axtell, J. C.; Rheingold, A. L.; Spokoyny, A. M. Org. Process Res. Dev. 2019, 23, 1638.
[22]
(d) Dziedzic, R. M.; Martin, J. L.; Axtell, J. C.; Saleh, L. M. A.; Ong, T.-C.; Yang, Y.-F.; Messina, M. S.; Rheingold, A. L.; Houk, K. N.; Spokoyny, A. M. J. Am. Chem. Soc. 2017, 139, 7729.
[22]
(e) Lyu, H.; Zhang, J.; Yang, J.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 4219.
[22]
(f) Guo, C.; Qiu, Z.; Xie, Z. ACS Catal. 2021, 11, 2134.
[23]
(a) Ge, Y.; Zhang, J.; Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2020, 59, 4851.
[23]
(b) Ge, Y.; Qiu, Z.; Xie, Z. Chem. Commun. 2021, 57, 8071.
[23]
(c) Ge, Y.; Zhang, J.; Qiu, Z.; Xie, Z. Dalton Trans. 2021, 50, 1766.
文章导航

/