AgNPs@ZIF-67复合纳米粒子的合成及其抗菌性能研究※
收稿日期: 2021-11-16
网络出版日期: 2022-02-08
基金资助
国家自然科学基金(22034006); 国家自然科学基金(21974132); 国家自然科学基金(21721003); 中国科学院青年创新促进会(2018258); 中国科学院青年创新促进会(2020233); 中国科学院青年创新促进会(2017269)
Study on Synthesis and Antibacterial Properties of AgNPs@ZIF-67 Composite Nanoparticles※
Received date: 2021-11-16
Online published: 2022-02-08
Supported by
National Natural Science Foundation of China(22034006); National Natural Science Foundation of China(21974132); National Natural Science Foundation of China(21721003); Youth Innovation Promotion Association, CAS(2018258); Youth Innovation Promotion Association, CAS(2020233); Youth Innovation Promotion Association, CAS(2017269)
细菌感染和因抗生素滥用而引发的细菌耐药性问题已经成为威胁公共健康的重大隐患, 开发新型、高效的抗菌剂势在必行. 金属有机框架材料(MOFs)是当今抗菌材料研究的热点之一. 多孔的碳骨架结构能够提供有限空间避免负载的金属纳米颗粒聚集以及有利于其稳定存在. 基于ZIF-67的载体作用, 发展了一种新颖、绿色、简便、低成本的银纳米颗粒-沸石咪唑骨架(AgNPs@ZIF-67)复合纳米粒子的制备方法. 利用透射电子显微镜、元素分布图谱、X射线衍射、X射线光电子能谱、N2吸-脱附等温线和Zeta电位等表征手段证实了小尺寸AgNPs均匀、稳定地分散在ZIF-67上. 少量的AgNPs沉积大幅提升了ZIF-67的抗菌性能, 使AgNPs@ZIF-67成为一种很有前途的抗菌纳米材料.
关键词: 沸石咪唑骨架材料; 银纳米颗粒; AgNPs@ZIF-67; 均匀负载; 抗菌性能
陈敬煌 , 孟天 , 武烈 , 石恒冲 , 杨帆 , 孙健 , 杨秀荣 . AgNPs@ZIF-67复合纳米粒子的合成及其抗菌性能研究※[J]. 化学学报, 2022 , 80(2) : 110 -115 . DOI: 10.6023/A21110519
Bacterial infection and resistance have threatened public health and it is necessary to develop a novel and efficient antibacterial agent. Metal-organic frameworks (MOFs) have been widely studied and applied in the antibacterial field. The porous carbon frameworks could provide intrinsic conditions to avoid the agglomeration and avail the stabilization of metal nanoparticles, which may be some synergies. Herein, a novel kind of AgNPs@ZIF-67 composite nanoparticles was prepared by a green, rapid, and cost-effective method, during which zeolitic imidazolate framework-67 (ZIF-67) acted as a template and small silver nanoparticles (AgNPs) could be facilely prepared in situ by the reduction of silver ions with fresh sodium borohydride (NaBH4). Specifically, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the existence of as-prepared AgNPs with average diameters of (7.05±0.09) nm and the introduction of AgNPs did not alter the size and rhombic dodecahedron-type morphology of ZIF-67. Energy-dispersive X-ray spectroscopy (EDS) elemental mapping revealed that AgNPs@ZIF-67 mainly contained uniformly dispersed C, N, O, Co and Ag elements. And the loading ratio of Ag weight content was 0.98% in it. The X-ray diffraction (XRD) pattern of the AgNPs@ZIF-67 sample showed a series of typical and sharp diffraction peaks in the (011), (002), (112), and (222) planes but no obvious peaks attributed to the AgNPs, which exhibited the formation of phase-pure ZIF-67 and well-dispersed of metallic Ag in ZIF-67. Zeta potentials showed a higher potential of ZIF-67 (+25.6 mV) than AgNPs@ZIF-67 (+17.7 mV), indicating the load of negative charged AgNPs and good stability of the as-obtained AgNPs@ZIF-67. Furthermore, Staphylococcus aureus (S. aureus) (ATCC 6538) was used in the antibacterial assay and the bacterial concentration was regarded as 1×108 CFU• mL–1 when the OD600 value of the suspensions was 0.1. The in vitro minimum inhibitory concentration (MIC) of AgNPs@ZIF-67, ZIF-67 were 300, 350 µg•mL–1, respectively. The antibacterial efficiency of AgNPs@ZIF-67, ZIF-67, and AgNPs at 24 h were 99.889%, 57.192%, and 26.433%, respectively. It was illustrated that the decoration of AgNPs could significantly improve the antibacterial ability of ZIF-67 nanomaterials. Moreover, SEM images of S. aureus showed that AgNPs@ZIF-67 did more serious damage to the cell membrane than ZIF-67. This work provided a facile method to fabricate the AgNPs@ZIF-67 composite nanoparticles, which was demonstrated as a promising antibacterial material based on the synergistic effect of AgNPs and ZIF-67.
[1] | Qi, Y.; Ren, S.; Che, Y.; Ye, J.; Ning, G. Acta Chim. Sinica 2020, 78, 613. (in Chinese) |
[1] | ( 齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.) |
[2] | Han, Y.; Liu, Z.; Chen, T. Front. Microbiol. 2021, 12, 643422. |
[3] | Chen, H.; Xu, F.; Xue, D.; Yang, Y.; Zhang, Q. Acta Chim. Sinica 2012, 70, 1362. (in Chinese) |
[3] | ( 陈华军, 徐伏秋, 薛冬, 阳永福, 张秋芬, 化学学报, 2012, 70, 1362.) |
[4] | Liao, C.; Li, Y.; Tjong, S. Int. J. Mol. Sci. 2019, 20, 449. |
[5] | Zhang, Y.; Zhang, X.; Song, J.; Jin, L.; Wang, X.; Quan, C. Nanomaterials 2019, 9, 1579. |
[6] | Braakhuis, M.; Gosens, I.; Krystek, P.; Boere, J.; Cassee, F.; Fokkens, P.; Post, J.; Loveren, H.; Park, M. Part. Fibre Toxicol. 2014, 11, 49. |
[7] | Li, R.; Chen, T.; Pan, X. ACS Nano 2021, 15, 3808. |
[8] | Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156. (in Chinese) |
[8] | ( 曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.) |
[9] | Li, J.; Lv, F.; Li, J.; Li, Y.; Gao, J.; Luo, J.; Xue, F.; Ke, Q.; Xu, H. Nano Res. 2020, 13, 2268. |
[10] | Chen, J.; Bao, X.; Meng, T.; Sun, J.; Yang, X. Chem. Eng. J. 2022, 430, 133091. |
[11] | Aguado, S.; Quiros, J.; Canivet, J.; Farrusseng, D.; Boltes, K.; Rosal, R. Chemosphere 2014, 113, 188. |
[12] | Shi, Q.; Luo, X.; Huang, Z.; Midgley, A. C.; Wang, B.; Liu, R.; Zhi, D.; Wei, T.; Zhou, X.; Qiao, M.; Zhang, J.; Kong, D.; Wang, K. Acta Biomater. 2019, 86, 465. |
[13] | Abd El Salam, H. M.; Nassar, H. N.; Khidr, A. S. A.; Zaki, T. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2791. |
[14] | Li, W.; Yang, F.; Fang, X.; Rui, Y.; Tang, B. Electrochim. Acta 2018, 282, 276. |
[15] | Sun, D.; Yang, D.; Wei, P.; Liu, B.; Chen, Z.; Zhang, L.; Lu, J. ACS Appl. Mater. Interfaces 2020, 12, 41960. |
[16] | Takashima, Y.; Sato, Y.; Tsuruoka, T.; Akamatsu, K. Dalton Trans. 2020, 49, 17169. |
[17] | Zhao, Y.; Sun, X.; Zhang, G.; Trewyn, B.; Slowing, I.; Lin, V. ACS Nano 2011, 5, 1366. |
[18] | Recordati, C.; De Maglie, M.; Bianchessi, S.; Argentiere, S.; Cella, C.; Mattiello, S.; Cubadda, F.; Aureli, F.; D'Amato, M.; Raggi, A.; Lenardi, C.; Milani, P.; Scanziani, E. Part. Fibre Toxicol. 2016, 13, 12. |
[19] | Yang, M.; Shao, Z.; Liao, X.; Xu, W.; Zhang, Y. Chin. J. Anal. Chem. 2020, 48, 1674. (in Chinese) |
[19] | ( 杨梅, 邵泽宇, 廖晓玲, 徐文峰, 张园园, 分析化学, 2020, 48, 1674.) |
[20] | Han, B.; Yan, Q.; Xin, Z.; Yan, Q.; Jiang, J. Chin. J. Anal. Chem. 2020, 48, 1025. (in Chinese) |
[20] | ( 韩冰雁, 闫琴, 辛泽, 燕琪芳, 姜静美, 分析化学, 2020, 48, 1025.) |
[21] | Sun, Y.; Qi, Y.; Shen, Y.; Jing, C.; Chen, X.; Wang, X. Acta Chim. Sinica 2020, 78, 147. (in Chinese) |
[21] | ( 孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.) |
[22] | Huang, X.; Lin, Y.; Zhang, J.; Chen, X. Angew. Chem., Int. Ed. 2006, 45, 1557. |
[23] | Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Superlattices Microstruct. 2014, 70, 1. |
[24] | Yu, Z.; Qian, L.; Zhong, T.; Ran, Q.; Huang, J.; Hou, Y.; Li, F.; Li, M.; Sun, Q.; Zhang, H. Mol. Catal. 2020, 485, 110797. |
[25] | Zhao, K.; Guo, J.; Wei, H.; Yang, Y. Eur. J. Inorg. Chem. 2019, 46, 4920. |
[26] | Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, L.; Deng, Q.; Dong, K.; Ren, J.; Qu, X. J. Am. Chem. Soc. 2020, 142, 5177. |
[27] | Fan, L.; Meng, T.; Yan, M.; Wang, D.; Chen, Y.; Xing, Z.; Wang, E.; Yang, X. Small 2021, e2100998. |
[28] | Saghir, S.; Xiao, Z. J. Mol. Liq. 2021, 328, 115323. |
[29] | Huang, X.; Xu, X.; Li, C.; Wu, D.; Cheng, D.; Cao, D. Adv. Energy Mater. 2019, 9, 1803970. |
[30] | Shakya, S.; He, Y.; Ren, X.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T.; Dhakhwa, R.; Regmi, B.; Li, H.; Gref, R.; Zhang, J. Small 2019, 15, e1901065. |
[31] | Miao, X.; Yu, F.; Liu, K.; Lv, Z.; Deng, J.; Wu, T.; Cheng, X.; Zhang, W.; Cheng, X.; Wang, X. Bioact. Mater. 2022, 7, 181. |
[32] | Zhao, J.; Bao, X.; Meng, T.; Wang, S.; Lu, S.; Liu, G.; Wang, J.; Sun, J.; Yang, X. Chem. Eng. J. 2021, 420, 129674. |
[33] | Qian, L.; Lei, D.; Duan, X.; Zhang, S.; Song, W.; Hou, C.; Tang, R. Carbohydr. Polym. 2018, 192, 44. |
[34] | Huang, L.; Chen, J.; Wang, J.; Dong, S. Sci. Adv. 2019, 5, eaav5490. |
[35] | Chao, D.; Dong, Q.; Chen, J.; Yu, Z.; Wu, W.; Fang, Y.; Liu, L.; Dong, S. Appl. Catal., B 2022, 304, 121017. |
[36] | Liu, L.; Luo, X.; Liu, J. Small 2020, 16, e2000011. |
[37] | Karimi Alavijeh, R.; Beheshti, S.; Akhbari, K.; Morsali, A. Polyhedron 2018, 156, 257. |
[38] | Shen, M.; Forghani, F.; Kong, X.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1397. |
[39] | Fang, G.; Li, W.; Shen, X.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X.; Chai, Z.; Chen, C.; Ge, C.; Zhou, R. Nat. Commun. 2018, 9, 129. |
[40] | Li, Z.; Gao, J.; Jian, M.; Wang, Z. Chin. J. Anal. Chem. 2018, 46, 1904. (in Chinese) |
[40] | ( 李铸衡, 高晶清, 简明红, 王振新, 分析化学, 2018, 46, 1904.) |
[41] | Liu, T.; Yan, S.; Zhou, R.; Zhang, X.; Yang, H.; Yan, Q.; Yang, R.; Luan, S. ACS Appl. Mater. Interfaces 2020, 12, 42576. |
/
〈 |
|
〉 |