喹喔啉类红光热活化延迟荧光材料研究进展
收稿日期: 2021-12-27
网络出版日期: 2022-02-08
基金资助
国家自然科学基金(52003058); 国家自然科学基金(U2001222); 国家自然科学基金(21975053); 国家自然科学基金(21975055); 国家自然科学基金(52003059); 广东省基础和应用基础研究基金(2019B1515120023); 广东省基础和应用基础研究基金(2019B1515120035); 广东省基础和应用基础研究基金(2021A1515010607); 广东省分子聚集发光重点实验室开放基金(2019-kllma-06)
Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline
Received date: 2021-12-27
Online published: 2022-02-08
Supported by
National Natural Science Foundation of China(52003058); National Natural Science Foundation of China(U2001222); National Natural Science Foundation of China(21975053); National Natural Science Foundation of China(21975055); National Natural Science Foundation of China(52003059); Guangdong Basic and Applied Basic Research Foundation(2019B1515120023); Guangdong Basic and Applied Basic Research Foundation(2019B1515120035); Guangdong Basic and Applied Basic Research Foundation(2021A1515010607); Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(2019-kllma-06)
红光材料是显示三基色材料之一, 具有发射能量小、穿透能力强和背景荧光干扰小等优点, 被广泛应用于全彩显示、生物传感和光动力治疗等领域. 红光材料目前存在的问题主要有: (1)跃迁能级小, 其非辐射跃迁速率快, 导致量子效率普遍较低; (2)分子共轭较大, 存在较强的π-π堆积作用, 容易导致荧光淬灭; (3)分子设计需要更大的共轭, 在分子合成上较为困难. 热活化延迟荧光(thermally activated delayed fluorescence, TADF)材料作为具有全新的发光机制的材料能够通过反向系间窜越过程利用三重态激子发射荧光, 极大地提高了量子效率, 因此, 基于TADF机制的红光材料成为了近年来人们研究的热点. 由于结构的特点, 喹喔啉及其衍生物非常适合用来构建红光TADF分子. 从喹喔啉类TADF红光材料的分子结构视角出发, 对红光TADF材料的近年来的研究进行概述, 讨论分子结构对材料性能影响, 并且对其发展进行展望.
周路 , 陈嘉雄 , 籍少敏 , 陈文铖 , 霍延平 . 喹喔啉类红光热活化延迟荧光材料研究进展[J]. 化学学报, 2022 , 80(3) : 359 -372 . DOI: 10.6023/A21120587
Red emitter is one of the three primary materials for display, which is widely used in full-color display, biosensing and photodynamic therapy due to the advantages of small emission energy, strong penetrating ability and low background fluorescence interference. At present, the main bottlenecks for the development of red emitters are as follows. (1) The narrow energy gaps of red emitters often lead to serious non-radiative transition and low quantum efficiency. (2) The largely conjugated structure of red emitters results in strong π-π stacking for emission quenching. (3) Molecular design requires greater conjugation, which is difficult in molecular synthesis. Red thermally activated delayed fluorescence (TADF) materials, as a new type of red emitters, can use triplet excitons to release fluorescence through reverse intersystem crossing process, which greatly improves the quantum efficiency. Therefore, red TADF materials have become a hot topic in recent years. Because of the structural advantages, quinoxaline and its derivative are promising building blocks for the construction of red TADF emitters. The research progress of the quinoxaline-based red TADF materials in recent years is summarized, the influence of molecular structure on the properties of materials is discussed, and the prospect is also provided.
[1] | Forrest, S. R. Nature 2004, 428, 911. |
[2] | Luo, J.; Xie, G.; Gong, S.; Chen, T.; Yang, C. Chem. Commun. 2016, 52, 2292. |
[3] | Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444. |
[4] | Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; Brase, S. Adv. Mater. 2021, 33, 2005630. |
[5] | Cao, H.; Li, B.; Wan, J.; Yu, T.; Xie, L.; Sun, C.; Liu, Y.; Wang, J.; Huang, W. Acta Chim. Sinica 2020, 78, 680. (in Chinese) |
[5] | 曹洪涛, 李波, 万俊, 余涛, 解令海, 孙辰, 刘玉玉, 王锦, 黄维, 化学学报, 2020, 78, 680.) |
[6] | Liang, Z.-P.; Tang, R.; Qiu, Y.-C.; Wang, Y.; Lu, H.; Wu, Z.-G. Acta Chim. Sinica 2021, 79, 1401. (in Chinese) |
[6] | (梁志鹏, 唐瑞, 邱雨晨, 王阳, 陆洪彬, 吴正光, 化学学报, 2021, 79, 1401.) |
[7] | Fang, F.; Zhu, L.; Li, M.; Song, Y.; Sun, M.; Zhao, D.; Zhang, J. Adv. Sci. 2021, 8, 2102970. |
[8] | Fang, F.; Yuan, Y.; Wan, Y.; Li, J.; Song, Y.; Chen, W. C.; Zhao, D.; Chi, Y.; Li, M.; Lee, C. S. Small 2022, 18, 2106215. |
[9] | Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. |
[10] | Leung, M.-K.; Chang, C.-C.; Wu, M.-H.; Chuang, K.-H.; Lee, J.-H.; Shieh, S.-J.; Lin, S.-C.; Chiu, C.-F. Org. Lett. 2006, 8, 2623. |
[11] | Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151. |
[12] | Qiu, Y.; Wei, P.; Zhang, D. Q.; Qiao, J.; Duan, L.; Li, Y. K.; Gao, Y. D.; Wang, L. D. Adv. Mater. 2006, 18, 1607. |
[13] | Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20, 4189. |
[14] | Tan, J.; Huo, Y.; Cai, N.; Ji, S.; Li, Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457. (in Chinese) |
[14] | (谭继华, 霍延平, 蔡宁, 籍少敏, 李宗植, 张力, 有机化学, 2017, 37, 2457.) |
[15] | Zhou, T.; Qian, Y.; Wang, H.; Feng, Q.; Xie, L.; Huang, W. Acta Chim. Sinica 2021, 79, 557. (in Chinese) |
[15] | (周涛, 钱越, 王宏健, 冯全友, 解令海, 黄维, 化学学报, 2021, 79, 557.) |
[16] | Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. |
[17] | Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802. |
[18] | Chen, X. K.; Tsuchiya, Y.; Ishikawa, Y.; Zhong, C.; Adachi, C.; Bredas, J. L. Adv. Mater. 2017, 29, 1702767. |
[19] | Ohsawa, T.; Sasabe, H.; Watanabe, T.; Nakao, K.; Komatsu, R.; Hayashi, Y.; Hayasaka, Y.; Kido, J. Adv. Opt. Mater. 2019, 7, 1801282. |
[20] | Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931. |
[21] | El-Sayed, M. A. J. Chem. Phys. 1963, 38, 2834. |
[22] | Zhang, Q.; Kuwabara, H.; Potscavage, W. J. Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18070. |
[23] | Zeng, W.; Zhou, T.; Ning, W.; Zhong, C.; He, J.; Gong, S.; Xie, G.; Yang, C. Adv. Mater. 2019, 31, 1901404. |
[24] | Zhao, J.; Yang, Z.; Chen, X.; Xie, Z.; Liu, T.; Chi, Z.; Yang, Z.; Zhang, Y.; Aldred, M. P.; Chi, Z. J. Mater. Chem. C 2018, 6, 4257. |
[25] | Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sinica 2017, 75, 367 (in Chinese) |
[25] | (陈仕琦, 代军, 周凯峰, 罗艳菊, 苏仕健, 蒲雪梅, 黄艳, 卢志云, 化学学报, 2017, 75, 367.) |
[26] | Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C. Adv. Mater. 2016, 28, 6976. |
[27] | Zeng, W.; Lai, H. Y.; Lee, W. K.; Jiao, M.; Shiu, Y. J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K. T.; Wu, C. C.; Yang, C. Adv. Mater. 2018, 30, 1704961. |
[28] | Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics 2018, 12, 235. |
[29] | Deol, H.; Singh, G.; Kumar, M.; Bhalla, V. J. Org. Chem. 2020, 85, 11080. |
[30] | Hogan, D. T.; Gelfand, B. S.; Spasyuk, D. M.; Sutherland, T. C. Mater. Chem. Front. 2020, 4, 268. |
[31] | Oliveira, P. F. M.; Haruta, N.; Chamayou, A.; Guidetti, B.; Baltas, M.; Tanaka, K.; Sato, T.; Baron, M. Tetrahedron 2017, 73, 2305. |
[32] | Hussain, H.; Specht, S.; Sarite, S. R.; Saeftel, M.; Hoerauf, A.; Schulz, B.; Krohn, K. J. Med. Chem. 2011, 54, 4913. |
[33] | Zhang, Y.; Zhang, D.; Cai, M.; Li, Y.; Zhang, D.; Qiu, Y.; Duan, L. Nanotechnology 2016, 27, 094001. |
[34] | Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y. Angew. Chem., Int. Ed. 2015, 54, 13068. |
[35] | Wang, S.; Cheng, Z.; Song, X.; Yan, X.; Ye, K.; Liu, Y.; Yang, G.; Wang, Y. ACS Appl. Mater. Interfaces 2017, 9, 9892. |
[36] | Furue, R.; Matsuo, K.; Ashikari, Y.; Ooka, H.; Amanokura, N.; Yasuda, T. Adv. Opt. Mater. 2018, 6, 1701147. |
[37] | Wang, S.; Miao, Y.; Yan, X.; Ye, K.; Wang, Y. J. Mater. Chem. C 2018, 6, 6698. |
[38] | Xie, F. M.; Wu, P.; Zou, S. J.; Li, Y. Q.; Cheng, T.; Xie, M.; Tang, J. X.; Zhao, X. Adv. Electron. Mater. 2019, 6, 1900843. |
[39] | Zhang, Y. L.; Ran, Q.; Wang, Q.; Liu, Y.; Hanisch, C.; Reineke, S.; Fan, J.; Liao, L. S. Adv. Mater. 2019, 31, 1902368. |
[40] | Balijapalli, U.; Nagata, R.; Yamada, N.; Nakanotani, H.; Tanaka, M.; D'Aleo, A.; Placide, V.; Mamada, M.; Tsuchiya, Y.; Adachi, C. Angew. Chem., Int. Ed. 2021, 60, 8477. |
[41] | Liu, Y.; Chen, Y.; Li, H.; Wang, S.; Wu, X.; Tong, H.; Wang, L. ACS Appl. Mater. Interfaces 2020, 12, 30652. |
[42] | Chen, J. X.; Wang, K.; Zheng, C. J.; Zhang, M.; Shi, Y. Z.; Tao, S. L.; Lin, H.; Liu, W.; Tao, W. W.; Ou, X. M.; Zhang, X. H. Adv. Sci. 2018, 5, 1800436. |
[43] | Chen, J. X.; Tao, W. W.; Chen, W. C.; Xiao, Y. F.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F. X.; Adachi, C.; Lee, C. S.; Zhang, X. H. Angew. Chem., Int. Ed. 2019, 58, 14660. |
[44] | Chen, J. X.; Xiao, Y. F.; Wang, K.; Sun, D.; Fan, X. C.; Zhang, X.; Zhang, M.; Shi, Y. Z.; Yu, J.; Geng, F. X.; Lee, C. S.; Zhang, X. H. Angew. Chem., Int. Ed. 2021, 60, 2478. |
[45] | Yuan, Y.; Hu, Y.; Zhang, Y.-X.; Lin, J.-D.; Wang, Y.-K.; Jiang, Z.-Q.; Liao, L.-S.; Lee, S.-T. Adv. Funct. Mater. 2017, 27, 1700986. |
[46] | Yu, Y. J.; Hu, Y.; Yang, S. Y.; Luo, W.; Yuan, Y.; Peng, C. C.; Liu, J. F.; Khan, A.; Jiang, Z. Q.; Liao, L. S. Angew. Chem., Int. Ed. 2020, 59, 21578. |
[47] | Xue, J.; Liang, Q.; Wang, R.; Hou, J.; Li, W.; Peng, Q.; Shuai, Z.; Qiao, J. Adv. Mater. 2019, 31, 1808242. |
[48] | Gong, X.; Li, P.; Huang, Y. H.; Wang, C. Y.; Lu, C. H.; Lee, W. K.; Zhong, C.; Chen, Z.; Ning, W.; Wu, C. C.; Gong, S.; Yang, C. Adv. Funct. Mater. 2020, 30, 1908839. |
[49] | Gong, X.; Lu, C.-H.; Lee, W.-K.; Li, P.; Huang, Y.-H.; Chen, Z.; Zhan, L.; Wu, C.-C.; Gong, S.; Yang, C. Chem. Eng. J. 2021, 405, 126663. |
[50] | Hu, X.; Zhong, C.; Li, X.; Jia, X.; Wei, Y.; Xie, L. Acta Chim. Sinica 2021, 79, 953. (in Chinese) |
[50] | (胡鑫明, 钟春晓, 李晓艳, 贾雄, 魏颖, 解令海, 化学学报, 2021, 79, 953.) |
[51] | Yuan, Y.; Chen, J.-X.; Lu, F.; Tong, Q.-X.; Yang, Q.-D.; Mo, H.-W.; Ng, T.-W.; Wong, F.-L.; Guo, Z.-Q.; Ye, J.; Chen, Z.; Zhang, X.-H.; Lee, C.-S. Chem. Mater. 2013, 25, 4957. |
[52] | Yuan, Y.; Chen, J.-X.; Chen, W.-C.; Ni, S.-F.; Wei, H.-X.; Ye, J.; Wong, F.-L.; Zhou, Z.-W.; Tong, Q.-X.; Lee, C.-S. Org. Electron. 2015, 18, 61. |
[53] | Cai, Z.; Wu, X.; Liu, H.; Guo, J.; Yang, D.; Ma, D.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2021, 60, 23635. |
[54] | Zhao, B.; Wang, H.; Han, C.; Ma, P.; Li, Z.; Chang, P.; Xu, H. Angew. Chem., Int. Ed. 2020, 59, 19042. |
[55] | Yu, H.; Song, X.; Xie, N.; Wang, J.; Li, C.; Wang, Y. Adv. Funct. Mater. 2020, 31, 2007511. |
[56] | Li, C.; Duan, R.; Liang, B.; Han, G.; Wang, S.; Ye, K.; Liu, Y.; Yi, Y.; Wang, Y. Angew. Chem., nt. Ed. 2017, 56, 11525. |
[57] | Li, Z.; Yang, D.; Han, C.; Zhao, B.; Wang, H.; Man, Y.; Ma, P.; Chang, P.; Ma, D.; Xu, H. Angew. Chem., nt. Ed. 2021, 60, 14846. |
[58] | Yang, T.; Liang, B.; Cheng, Z.; Li, C.; Lu, G.; Wang, Y. J. Phys. Chem. C 2019, 123, 18585. |
[59] | Yang, T.; Cheng, Z.; Li, Z.; Liang, J.; Xu, Y.; Li, C.; Wang, Y. Adv. Funct. Mater. 2020, 30, 2002681. |
/
〈 |
|
〉 |