有机发光晶体管的关键材料和器件研究※
收稿日期: 2022-01-05
网络出版日期: 2022-02-10
基金资助
国家自然科学基金委杰出青年科学基金(51725304); 国家重点研发计划纳米科技重点专项课题(2017YFA0204503); 国家分子科学中心项目(BNLMS-CXXM-202012); 中国科学院B类先导科技专项培育项目(XDPB13)
Research on Key Materials and Devices of Organic Light-emitting Transistors※
Received date: 2022-01-05
Online published: 2022-02-10
Supported by
National Science Fund for Distinguished Young Scholars(51725304); Key special topics of Nanotechnology of National key R & D plan(2017YFA0204503); National Molecular Science Center Project(BNLMS-CXXM-202012); Class B special cultivation project of Chinese Academy of science and technology(XDPB13)
有机发光晶体管(organic light-emitting transistor, OLET)是一种变革性的小型化有机光电器件, 其在同一器件中集成了场效应晶体管和发光二极管的两种器件功能, 在材料的基础物性研究、新型柔性显示/照明、有机电泵浦激光以及片上集成光电子器件等方面都具有着重要的研究意义. OLET独特的器件结构及工作模式使其对核心的关键材料和器件制备提出了新的要求, 而高性能OLET器件的构筑需要从材料和器件两个方面同时进行优化与改善. 近五年作者课题组和合作者在全面调研和分析OLET领域整体研究背景和存在基本科学问题基础上, 聚焦于高迁移率发光有机半导体关键材料的开发和高效OLET器件(线光源和面光源发光模式)的构筑两个方面开展了初步的探索性研究, 发展了系列特别是基于蒽和芴的高迁移率发光/激光有机半导体材料, 构筑了高性能的单组分有机单晶OLET器件和新型平面OLET面光源发射显示器件, 为进一步推动OLET及其相关领域发展奠定了重要的材料和器件研究基础.
高海阔 , 苗扎根 , 胡文平 , 董焕丽 . 有机发光晶体管的关键材料和器件研究※[J]. 化学学报, 2022 , 80(3) : 327 -339 . DOI: 10.6023/A22010006
Organic light-emitting transistor (OLET) is a kind of revolutionary miniaturized optoelectronic device which integrates the functions of an organic field-effect transistor and an organic light-emitting diode in a single device. This unique integrated architecture of OLET makes it show great potential for studies of fundamental properties of organic materials, applications in fields of novel organic flexible display/lighting technology, organic electrically-pumped lasers as well as on-chip optoelectronic systems. To realize the full potential of these technologies, the development of key materials and optimization of device fabrication techniques including device structures and processing conditions are highly required. Based on the comprehensive study of the development and basic scientific problems in the OLET field, in the past five years, the authors' research group and collaborators carried out systematical exploratory researches with focuses on the development of high mobility emissive organic semiconductors and construction of high performance OLETs with line- and area-feature emission. Up to now, a series of achievements have been obtained. For instance, we developed a series of anthracene- and fluorene-based high mobility emissive organic semiconductors from the origin of molecular design innovation, which overcomes the science bottleneck of impossibility for integrating high charge carrier mobility and strong emission in the same molecule. Furthermore, this molecular design concept also shows a certain feasibility for the development of other small molecular systems and high mobility emissive conjugated polymers. Moreover, with the mind of integrating the advantages of area-emission of vertical OLET and good gate-tunability and stability of planar OLET, we propose a new area-emission planar OLET architecture, which exhibits a large aperture ratio of over 80% due to the arbitrary tunability of device structure. These preliminary experimental researches and results will provide valuable guidelines for future research of OLETs and their related fields.
[1] | Qin, Z.-S.; Gao, H.-K.; Liu, J.-Y.; Zhou, K.; Li, J.; Dang, Y.-Y.; Huang, L.; Deng, H.-X.; Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2021, 33, 2007149. |
[2] | Muccini, M. Nat. Commun. 2006, 5, 605. |
[3] | Kurosaka, Y.; Iwahashi, S.; Liang, Y.; Sakai, K.; Miyai, E.; Kunishi, W.; Ohnishi, D.; Noda, S. Nat. Photonics, 2010, 4, 447. |
[4] | Hepp, A.; Heil, H.; Weise, W.; Ahles, M.; Schmechel, R.; von Seggern, H. Phys. Rev. Lett. 2003, 91, 157406. |
[5] | Dong, H.-L,; Hu, W.-P. Acc. Chem. Res. 2016, 49, 2435. |
[6] | Xu, X.-M.; Yao, Y.-F.; Shan, B.-W.; Gu, X.; Liu, D.-Q.; Liu, J.-Y.; Xu, J.-B.; Zhao, N.; Hu, W.-P.; Miao, Q. Adv. Mater. 2016, 28, 5276. |
[7] | Yao, Y.-F.; Dong, H.-L.; Liu, F.; Russell, T. P.; Hu, W.-P. Adv. Mater. 2017, 29. |
[8] | Wang, C.; Zhang, X.-T.; Dong, H.-L.; Chen, X.-D.; Hu, W.-P. Adv. Energy Mater. 2020, 10, 2000955. |
[9] | Liu, J.; Jiang, L.; Hu, W.-P.; Liu, Y.-Q.; Zhu, D.-B. Sci. China Chem. 2019, 62, 313. |
[10] | Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Nat. Mater. 2006, 5, 69. |
[11] | Qin, Z.-S; Gao, H.-K.; Liu, J.-Y.; Zhou, K.; Li, J.; Dang, Y.-Y.; Huang, L.; Deng, H.-X.; Zhang, X.-T.; Dong, H.-L; Hu, W.-P. Adv. Mater. 2019, 31, 1903175. |
[12] | Gwinner, M. C.; Khodabakhsh, S.; Song, M. H.; Schweizer, H.; Giessen, H.; Sirringhaus, H. Adv. Funct. Mater. 2009, 19, 1360. |
[13] | Guo, L.-D.; Qin, Y.; Gu, X.-R.; Zhu, X.-W.; Zhou, Q.; Sun, X.-N. Front. Chem. 2019, 7, 428. |
[14] | Wang, D.-Y.; Liu, L.-Y; Gao, X.-K.; Di, C.-A.; Zhu, D.-B. CCS Chem. 2021, 3, 2212. |
[15] | Ding, S.-S.; Tian, Y.; Hu, W.-P. Nano Res. 2021, 14, 3653. |
[16] | Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Nat. Mater. 2010, 9, 496. |
[17] | McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Science, 2011, 332, 570. |
[18] | Yamao, T.; Terasaki, K.; Shimizu, Y.; Hotta, S. J. Nanosci. Nanotechnol. 2010, 10, 1017. |
[19] | Verlaak, S.; Cheyns, D.; Debucquoy, M.; Arkhipov, V.; Heremans, P. Appl. Phys. Lett. 2004, 85, 2405. |
[20] | Samuel, I. D.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272. |
[21] | Yap, B. K.; Xia, R.; Campoy-Quiles, M.; Stavrinou, P. N.; Bradley, D. D. Nat. Mater. 2008, 7, 376. |
[22] | Sandanayaka, A. S. D.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W. J.; Qin, C.-J.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Appl. Phys. Express, 2019, 12, 061010. |
[23] | Wang, K.; Zhao, Y.-S. Chem, 2021, 7, 3221. |
[24] | Zhao, G.-Y.; Dong, H.-L.; Liao, Q.; Jiang, J.; Luo, Y.; Fu, H.-B.; Hu, W.-P. Nat. Commun. 2018, 9, 4790. |
[25] | Lu, S.-Y.; Fang, H.-H.; Feng, J.; Xia, H.; Zhang, T.-Q.; Chen, Q.-D.; Sun, H.-B. J. Lightwave Technol. 2014, 32, 2415. |
[26] | Hu, Y.-W.; Yu, M.-J.; Zhu, D.; Sinclair, N.; Shams-Ansari, A.; Shao, L.-B.; Holzgrafe, J.; Puma, E.; Zhang, M.; Loncar, M. Nature, 2021, 599, 587. |
[27] | Ambrosetti, A.; Ferri, N.; DiStasio, R. A.,Jr.; Tkatchenko, A. Science 2016, 351, 1171. |
[28] | Gao, C.; Wong, W. W. H.; Qin, Z.-S.; Lo, S. C.; Namdas, E. B.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2021, 33, 2100704. |
[29] | Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Appl. Phys. Lett. 2007, 90, 102120. |
[30] | Giri, G.; Verploegen, E.; Mannsfeld, S. C.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z.-N. Nature, 2011, 480, 504. |
[31] | Dong, H.-L.; Fu, X.-L.; Liu, J.; Wang, Z.-R.; Hu, W.-P. Adv. Mater. 2013, 25, 6158. |
[32] | Ou, Q.; Peng, Q.; Shuai, Z.-G. Nat. Commun. 2020, 11, 4485. |
[33] | Yap, B. K.; Xia, R.-D.; Campoy-Quiles, M.; Stavrinou, P. N.; Bradley, D. D. Nat. Mater. 2008, 7, 376. |
[34] | Chan, C.-Y.; Tanaka, M.; Lee, Y.-T.; Wong, Y.-W.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Nat. Photonics, 2021, 15, 203. |
[35] | Sawabe, K.; Imakawa, M.; Nakano, M.; Yamao, T.; Hotta, S.; Iwasa, Y.; Takenobu, T. Adv. Mater. 2012, 24, 6141. |
[36] | Liu, J.; Dong, H.-L.; Wang, Z.-R.; Ji, D.-Y.; Cheng, C.-L.; Geng, H.; Zhang, H.-T.; Zhen, Y.-G.; Jiang, L.; Fu, H.-B.; Bo, Z.-S.; Chen, W.; Shuai, Z.-G.; Hu, W.-P. Chem. Commun. 2015, 51, 11777. |
[37] | Liu, J.; Zhang, H.-T.; Dong, H.-L.; Meng, L.-Q.; Jiang, L.-F.; Jiang, L.; Wang, Y.; Yu, J.-S.; Sun, Y.-M.; Hu, W.-P.; Heeger, A. J. Nat. Commun. 2015, 6, 10032. |
[38] | Sun, Q.; Ren, J.-J.; Jiang, T.; Peng, Q.; Ou, Q.; Shuai, Z.-G. Nano Lett, 2021, 21, 5394. |
[39] | Li, J.; Zhou, K.; Liu, J.; Zhen, Y.-G.; Liu, L.; Zhang, J.-D.; Dong, H.-L.; Zhang, X.-T.; Jiang, L.; Hu, W.-P. J. Am. Chem. Soc. 2017, 139, 17261. |
[40] | Liu, J.; Zhu, W.-G.; Zhou, K.; Wang, Z.-R.; Zou, Y.; Meng, Q.; Li, J.; Zhen, Y.-G.; Hu, W.-P. J. Mater. Chem. C, 2016, 4, 3621. |
[41] | Liu, J.; Meng, L.-Q.; Zhu, W.-G.; Zhang, C.-C.; Zhang, H.-T.; Yao, Y.-F.; Wang, Z.-R.; He, P.; Zhang, X.-T.; Wang, Y.; Zhen, Y.-G.; Dong, H.-L.; Yi, Y.-P.; Hu, W.-P. J. Mater. Chem. C, 2015, 3, 3068. |
[42] | Tao, J.-W.; Liu, D.; Jing, J.-B.; Dong, H.-L.; Liu, L.-J.; Xu, B.; Tian, W.-J. Adv. Mater. 2021, 33, 2105466. |
[43] | Xie, Z.; Liu, D.; Zhang, Y.-H.; Liu, Q.-Q.; Dong, H.-L.; Hu, W.-P. Chem. J. Chin. Univ. 2019, 41, 1179. (in Chinese) |
[43] | (谢子仪, 刘单, 张逸寒, 刘情情, 董焕丽, 胡文平, 高等学校化学学报, 2019, 41, 1179.) |
[44] | Ma, S.-Q.; Zhou, K.; Hu, M.-X.; Li, Q.-Y.; Liu, Y.-J.; Zhang, H.-T.; Jing, J.-B.; Dong, H.-L.; Xu, B.; Hu, W.-P.; Tian, W.-J. Adv. Funct. Mater. 2018, 28, 1802454. |
[45] | Liu, Q.-Q.; Zhang, Y.-H.; Gao, C.; Wang, T.-Y.; Hu, W.-P.; Dong, H.-L. Acta Chim. Sinica 2020, 78, 945. (in Chinese) |
[45] | (刘情情, 张逸寒, 高灿, 王天禹, 胡文平, 董焕丽, 化学学报, 2020, 78, 945.) |
[46] | Zhang, Y.-H.; Ye, J.; Liu, Z.-Y.; Liu, Q.-Q.; Guo, X.-F.; Dang, Y.-F.; Zhang, J.-Q.; Wei, Z.-X.; Wang, Z.-X.; Wang, Z.-H.; Dong, H.-L.; Hu, W.-P. J. Mater. Chem. C, 2020, 8, 10868. |
[47] | Guo, X.-F.; Zhang, Y.-H.; Hu, Y.-X.; Yang, J.-X.; Li, Y.; Ni, Z.-J.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2021, 60, 14902. |
[48] | Liu, D.; Liao, Q.; Peng, Q.; Gao, H.-K.; Sun, Q.; De, J.-B.; Gao, C.; Miao, Z.-G.; Qin, Z.-S.; Yang, J.-X.; Fu, H.-B.; Shuai, Z.-G.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2021, 60, 20274. |
[49] | Liu, D.; De, J.-B.; Gao, H.-K.; Ma, S.-Q.; Ou, Q.; Li, S.; Qin, Z.-S.; Dong, H.-L.; Liao, Q.; Xu, B.; Peng, Q.; Shuai, Z.-G.; Tian, W.-J.; Fu, H.-B.; Zhang, X.-T.; Zhen, Y.-G.; Hu, W.-P. J. Am. Chem. Soc. 2020, 142, 6332. |
[50] | Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2018, 30. |
[51] | Chen, S.-N.; Li, Z.; Qiao, Y.-L.; Song, Y.-L. J. J. Mater. Chem. C 2021, 9, 1126. |
[52] | Lin, C.-C.; Peng, B.-Y.; Li, H.-Y. Chem. J. Chin. Univ. 2021, 42, 1672. (in Chinese) |
[52] | (林城策, 彭博宇, 李寒莹, 高等学校化学学报, 2021, 42, 1672.) |
[53] | Zhang, C.-C.; Zhang, F.-H.; Ding, L.; Ni, Z.-J.; Jiang, L.; Dong, H.-L.; Zhang, X.-T.; Li, R.-J.; Hu, W.-P. Chem. J. Chin. Univ. 2018, 39, 102. (in Chinese) |
[53] | (张婵婵, 张方辉, 丁磊, 倪振杰, 江浪, 董焕丽, 张小涛, 李荣金, 胡文平, 高等学校化学学报, 2018, 39, 102.) |
[54] | Wang, P.; Liu, D.; Wang, Y.-S.; Zhang, P.; Yu, P.-P.; Wang, M.-C.; Zhen, Y.-G.; Dong, H.-L.; Hu, W.-P. Chin. Chem. Lett. 2020, 31, 2909. |
[55] | TKe, T.-H.; Gehlhaar, R.; Chen, C.-H.; Lin, J.-T.; Wu, C.-C.; Adachi, C. Appl. Phys. Lett. 2009, 95, 063303. |
[56] | Hsu, B. B.; Seifter, J.; Takacs, C. J.; Zhong, C.; Tseng, H. R.; Samuel, I. D.; Namdas, E. B.; Bazan, G. C.; Huang, F.; Cao, Y.; Heeger, A. J. ACS Nano, 2013, 7, 2344. |
[57] | Muhieddine, K.; Ullah, M.; Pal, B. N.; Burn, P.; Namdas, E. B. Adv. Mater. 2014, 26, 6410. |
[58] | Walker, B.; Ullah, M.; Chae, G. J.; Burn, P. L.; Cho, S.; Kim, J. Y.; Namdas, E. B.; Seo, J. H. Appl. Phys. Lett. 2014, 105, 183302. |
[59] | Cui, S.-B.; Hu, Y.-F.; Lou, Z.-D.; Yi, R.; Hou, Y.-B.; Teng, F. Org. Electron. 2015, 22, 51-55. |
[60] | Wan, Y.-J.; Deng, J.; Wu, W.-L.; Zhou, J.-D.; Niu, Q.; Li, H.-Y.; Yu, H.-K.; Gu, C.; Ma, Y.-G. ACS Appl. Mater. Interfaces, 2020, 12, 43976. |
[61] | Liu, L.-Q.; Cai, C.; Zhang, Z.-J; Zhang, S.-T.; Deng, J.; Yang, B.; Gu, C.; Ma, Y.-G. ACS Mater. Lett. 2021, 3, 428. |
[62] | Nakamura, K.; Hata, T.; Yoshizawa, A.; Obata, K.; Endo, H.; Kudo, K. Appl. Phys. Lett. 2006, 89, 103525. |
[63] | Liu, B.; McCarthy, M. A.; Yoon, Y.; Kim, D. Y.; Wu, Z.; So, F.; Holloway, P. H.; Reynolds, J. R.; Guo, J.; Rinzler, A. G. Adv. Mater. 2008, 20, 3605. |
[64] | Nakamura, K.; Hata, T.; Yoshizawa, A.; Obata, K.; Endo, H.; Kudo, K. Jpn. J. Appl. Phys. 2008, 47, 1889. |
[65] | Liu, J.-Y.; Zhou, K.; Liu, J.; Zhu, J.; Zhen, Y.-G.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2018, 30, 1803655. |
[66] | Gao, H.-K.; Liu, J.-Y.; Qin, Z.-S.; Wang, T.-Y.; Gao, C.; Dong, H.-L.; Hu, W.-P. Nanoscale, 2020, 12, 18371. |
[67] | Greenman, M.; Sheleg, G.; Keum, C. M.; Zucker, J.; Lussem, B.; Tessler, N. J. Appl. Phys. 2017, 121, 204503. |
[68] | Gao, H.-K.; Miao, Z.-G.; Qin, Z.-S.; Yang, J.-X.; Wang, T.-Y.; Gao, C.; Dong, H.-L.; Hu, W.-P. Adv. Mater. 2021, 2108795. |
/
〈 |
|
〉 |