大尺寸二维卤化物钙钛矿铁电晶体的生长及偏振光电探测性能研究※
收稿日期: 2021-12-31
网络出版日期: 2022-02-11
基金资助
国家自然科学基金(21833010); 国家自然科学基金(21921001); 国家自然科学基金(22075285); 国家自然科学基金(22125110); 中国科学院前沿科学重点研究项目(ZDBS-LY-SLH024); 福建省自然科学基金(2020J01112); 中国科学院战略性先导研究项目(XDB20010200); 中国科学院青年创新促进会(2020307); 博士后创新研究计划(BX2021315)
Bulk Single Crystal Growth of a Two-Dimensional Halide Perovskite Ferroelectric for Highly Polarized-Sensitive Photodetection※
Received date: 2021-12-31
Online published: 2022-02-11
Supported by
National Natural Science Foundation of China(21833010); National Natural Science Foundation of China(21921001); National Natural Science Foundation of China(22075285); National Natural Science Foundation of China(22125110); Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-SLH024); Natural Science Foundation of Fujian Province(2020J01112); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20010200); Youth Innovation Promotion of Chinese Academy of Sciences(2020307); National Postdoctoral Program for Innovative Talents(BX2021315)
低维半导体材料, 尤其是近些年快速发展的二维卤化物钙钛矿材料, 因其固有的结构各向异性、独特的量子限域效应和优异的半导体特性, 在偏振光电探测等领域展现出巨大的应用潜力. 其中, 铁电极化所产生的体光伏效应为实现高灵敏的偏振光电探测提供了一种简单有效的途径. 然而二维卤化物钙钛矿铁电体的大尺寸晶体生长仍然是其在光电器件应用中所面临的一个科学难题. 本工作中, 利用溶液降温法生长出了厘米级尺寸的高质量二维卤化物钙钛矿(iPA)2EA2Pb3I10 (iPA为异戊胺, EA为乙胺)铁电单晶, 其最大晶体尺寸达15 mm×15 mm×3 mm. 实验结果表明二维钙钛矿结构赋予(iPA)2EA2Pb3I10晶体强的光学各向异性、窄的光学带隙(1.80 eV)和极其优异的光电特性(光电响应开关比达到103). 更重要的是, 基于(iPA)2EA2Pb3I10铁电单晶组装的光电探测器在弱偏振光的照射下表现出极其优异的光电特性, 包括大二色比(2.3)、高响应度(193 mA•W–1)和探测率(7.0×1011 Jones), 超过大多数基于材料本征光学各向异性的光电探测器件. 这项工作不仅为高度各向异性卤化物钙钛矿铁电体的晶体生长指明了方向, 而且推动了铁电材料在高性能偏振光电探测器等方面的应用.
张芬 , 李霄琪 , 韩世国 , 邬发发 , 刘希涛 , 孙志华 , 罗军华 . 大尺寸二维卤化物钙钛矿铁电晶体的生长及偏振光电探测性能研究※[J]. 化学学报, 2022 , 80(3) : 237 -243 . DOI: 10.6023/A21120613
Low-dimensional semiconductors, especially recent emerging two-dimensional halide perovskites, have shown great potential in extensive optoelectronic applications due to their large structural anisotropy, unique quantum well effect and excellent semiconductor properties. Meanwhile, the bulk photovoltaic effect with a highly sensitive angle-resolved photoresponse arising from ferroelectric materials presents a promising approach for highly polarized-sensitive photodetection. Despite the blooming development of two-dimensional halide perovskite ferroelectric materials, it is a great challenge to grow bulk single crystals of two-dimensional halide perovskite ferroelectric, which restricts their further applications in polarized-sensitive optoelectronic devices. This work mainly focuses on the developing of low-dimensional halide perovskite ferroelectric crystals with excellent photoelectric response. Two-dimensional (2D) halide perovskite ferroelectric (iPA)2EA2Pb3I10 (iPA=isopentammonium, EA=ethylammonium) was synthesized by a solution method through the reaction of stoichiometric lead acetate, isoamine and ethylamine in concentrated aqueous hydroiodic acid. Meanwhile, high quality centimeter-size single crystals of ferroelectric (iPA)2EA2Pb3I10 with the max dimensions up to 15 mm×15 mm×3 mm have been grown via temperature cooling method. On the basis of grown bulk single crystals, further investigations on the crystal structure, optical properties measurements and electrical properties characterization were carried out. The photoelectric response performance and polarization photodetection performance of photoelectric detectors based on the compound ferroelectric single crystal assembly. The result indicated that the unique two-dimensional perovskite structure endows (iPA)2EA2Pb3I10 with strong optical anistropy, narrow bandgap (1.80 eV) and fascinating photoelectric features (on/off ratio=103). Strikingly, the fabricated photodetectors based on ferroelectric crystal (iPA)2EA2Pb3I10 manifest excellent photoelectric features, including large dichroism ratio (2.3), high responsibility (193 mA•W–1) and photodetectivity (7.0×1011 Jones), better than most photodetector based on intrinsic optical anisotropy of 2D materials. This work will be of great significance to lay a foundation for the exploring of multifunctional halide perovskites and points out the direction for bulk grown of highly anisotropic halide perovskite ferroelectric crystals and promotes their further applications in highly polarized-sensitive photodetection.
[1] | Yuan, H.-T.; Liu, X.-G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G.-J.; Hikita, Y.; Shen, Z.-X.; Zhang, S.-C.; Chen, X.-H.; Brongersma, M.; Hwang, H. Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 707. |
[2] | Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nat. Nanotechnol. 2013, 8, 497. |
[3] | Liu, F.-C.; Zheng, S.-J.; He, X.-X.; Chaturvedi, A.; He, J.-F.; Chow, W. L.; Mion, T. R.; Wang, X.-L.; Zhou, J.-D.; Fu, Q.-D.; Fan, H.-J.; Tay, B. K.; Song, L.; He, R.-H.; Kloc, C.; Ajayan, P. M.; Liu, Z. Adv. Funct. Mater. 2016, 26, 1169. |
[4] | Wang, X.-T.; Li, Y.-T.; Huang, L.; Jiang, X.-W.; Jiang, L.; Dong, H.-L.; Wei, Z.-M.; Li, J.-B.; Hu, W.-P. J. Am. Chem. Soc. 2017, 139, 14976. |
[5] | Wang, K.-Y.; Jing, L.; Yao, Q.; Zhang, J.; Cheng, X.-H.; Yuan, Y.; Shang, C.-Y.; Ding, J.-X.; Zhou, T.-L.; Sun, H.-Q.; Zhang, W.-W.; Li, H.-P. J. Phys. Chem. Lett. 2021, 12, 1904. |
[6] | Lines, M. E.; Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 1977. |
[7] | Scott, J. F. Science 2007, 315, 954. |
[8] | Spaldin, N. A.; Cheong, S. W.; Ramesh, R. Phys. Today 2010, 63, 38. |
[9] | Garcia, V.; Bibes, M.; Bocher, L.; Valencia, S.; Kronast, F.; Crassous, A.; Moya, X.; Enouz-Vedrenne, S.; Gloter, A.; Imhoff, D.; Deranlot, C.; Mathur, N. D.; Fusil, S.; Bouzehouane, K.; Barthélémy, A. Science 2010, 327, 1106. |
[10] | Scott, J. F. Nat. Mater. 2007, 6, 256. |
[11] | Fridkin, V. M. Photoferroelectrics, Springer Science & Business Media, Moscow, 1979. |
[12] | Fridkin, V. M.; Grekov, A. A.; Rodin, A. I. Ferroelectrics 1982, 43, 99. |
[13] | Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W. Science 2009, 324, 63. |
[14] | Kreisel, J.; Alexe, M.; Thomas, P. A. Nat. Mater. 2012, 11, 260. |
[15] | Spanier, J. E.; Fridkin, V. M.; Rappe, A. M.; Akbashev, A. R.; Polemi, A.; Qi, Y.; Gu, Z.; Young, S. M.; Hawley, C. J.; Imbrenda, D.; Xiao, G.; Bennett-Jackson, A. L.; Johnson, C. L. Nat. Photonics 2016, 10, 611. |
[16] | Zhang, Y. J.; Ideue, T.; Onga, M.; Qin, F.; Suzuki, R.; Zak, A.; Tenne, R.; Smet, J. H.; Iwasa, Y. Nature 2019, 570, 349. |
[17] | Brody, P.; Crowne, F. J. Electron. Mater. 1975, 4, 955. |
[18] | Koch, W. T. H.; Munser, R.; Ruppel, W.; Wurfel, P. Solid State Commun. 1975, 17, 847. |
[19] | Belinicher, V.; Malinovskii, V.; Sturman, B. Sov. J. Exp. Theor. Phys. 1977, 46, 362. |
[20] | Fridkin, V. M.; Popov, B. N.; Kuznetzov, V. A.; Barsukova, M. L. Ferroelectrics 1978, 19, 109. |
[21] | Gunter, P. Ferroelectrics 1978, 22, 671. |
[22] | Krätzig, E.; Orlowski, R. Appl. Phys. 1978, 15, 133. |
[23] | Glass, A. M.; von der Linde, D.; Negran, T. J. Appl. Phys. Lett. 1974, 25, 233. |
[24] | Glass, A. M.; von der Linde, D.; Auston, D. H.; Negran, T. J. J. Electron. Mater. 1975, 4, 915. |
[25] | Liao, W.-Q.; Zhang, Y.; Hu, C.-L.; Mao, J.-G.; Ye, H.-Y.; Li, P.-F.; Huang, S. D.; Xiong, R.-G. Nat. Commun. 2015, 6, 7338. |
[26] | Li, L.-N.; Liu, X.-T.; Li, Y.-B.; Xu, Z.-Y.; Wu, Z.-Y.; Han, S.-G.; Tao, K.; Hong, M.-C.; Luo, J.-H.; Sun, Z.-H. J. Am. Chem. Soc. 2019, 141, 2623. |
[27] | Wang, J.-Q.; Liu, Y.; Han, S.-G.; Ma, Y.; Li, Y.-B.; Xu, Z.-Y.; Luo, J.-H.; Hong, M.-C.; Sun, Z.-H. Sci. Bull. 2021, 66, 158. |
[28] | Chen, X.-M.; Lu, W.-G.; Tang, J.-L.; Zhang, Y.-Y.; Wang, Y.-T.; Scholes, G. D.; Zhong, H.-Z. Nat. Photonics 2021, 15, 813. |
[29] | Li, J.-Y.; Han, Z.-Y.; Gu, Y.; Yu, D.-J.; Liu, J.-X.; Hu, D.-W.; Xu, X.-B.; Zeng, H.-B. Adv. Funct. Mater. 2020, 31, 2008684. |
[30] | Wang, Y.-L.; Chang, S.; Chen, X.-M.; Ren, Y.-D.; Shi, L.-F.; Liu, Y.-H.; Zhong, H.-Z. Chin. J. Chem. 2019, 37, 616. |
[31] | Han, S.-G.; Li, M.-F.; Liu, Y.; Guo, W.-Q.; Hong, M.-C.; Sun, Z.-H.; Luo, J.-H. Nat. Commun. 2021, 12, 284. |
[32] | Xu, H.-J.; Han, S.-G.; Sun, Z.-H.; Luo, J.-H. Acta Chim. Sinica 2021, 79, 23. (in Chinese) |
[32] | (徐豪杰, 韩世国, 孙志华, 罗军华, 化学学报, 2021, 79, 23.) |
[33] | Ding, J.-X.; Cheng, X.-H.; Jing, L.; Zhou, T.-L.; Zhao, Y.; Du, S.-J. ACS Appl. Mater. Inter. 2018, 10, 845. |
[34] | Chen, Z.-H.; Han, Z.-S.; Shi, W.; Cheng, P. Acta Chim. Sinica 2020, 78, 1336. (in Chinese) |
[34] | (陈中杭, 韩宗甦, 师唯, 程鹏, 化学学报, 2020, 78, 1336.) |
[35] | Ji, C.-M.; Dey, D.; Peng, Y.; Liu, X.-T.; Li, L.-N.; Luo, J.-H. Angew. Chem. Int. Ed. 2020, 59, 18933. |
[36] | Li, L.; Jin, L.; Zhou, Y.-X.; Li, J.-Z.; Ma, J.-Q.; Wang, S.; Li, W.-C.; Li, D.-H. Adv. Opt. Mater. 2019, 7, 1900988. |
[37] | Liu, Y.; Wu, Z.-Y.; Liu, X.-T.; Han, S.-G.; Li, Y.-B.; Yang, T.; Ma, Y.; Hong, M.-C.; Luo, J.-H.; Sun, Z.-H. Adv. Opt. Mater. 2019, 7, 1901049. |
/
〈 |
|
〉 |