收稿日期: 2021-12-31
网络出版日期: 2022-02-24
基金资助
国家重点研发计划(2020YFA0210800); 国家重点研发计划(2021YFA0909400); 国家自然科学基金(22025402); 国家自然科学基金(91959101); 国家自然科学基金(21904028); 国家自然科学基金(22104026); 国家自然科学基金(22174030); 中国科学院战略性先导科技专项(XDA16021200)
Thermomicrofluidic Biosensing Systems※
Received date: 2021-12-31
Online published: 2022-02-24
Supported by
National Key R&D Program of China(2020YFA0210800); National Key R&D Program of China(2021YFA0909400); National Natural Science Foundation of China(22025402); National Natural Science Foundation of China(91959101); National Natural Science Foundation of China(21904028); National Natural Science Foundation of China(22104026); National Natural Science Foundation of China(22174030); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16021200)
复杂生命体系中关键分子及微纳生物粒子的高灵敏、高特异检测, 对理解多层次多尺度生物学过程、阐明疾病发生发展机制和探索新型生物标志物等具有重要意义. 微流控生物传感器整合了微流控技术和生物传感技术的诸多优势, 在微量生物样本精准测量方面取得了显著进展. 近年来, 微流控热泳生物传感技术(Thermomicrofluidic biosensing)利用物质在局域温度梯度场中的热泳定向迁移现象, 并结合均相生物传感及信号放大新策略, 实现了复杂样本中生物分子及微纳生物粒子的快速、高灵敏、原位检测. 重点阐述了以热泳为核心的微流控传感技术, 包括微量热泳、热泳-对流耦合、热泳-扩散泳耦合以及热泳-电泳耦合等方法, 总结了不同传感方法的原理、特点及其在生物分子(蛋白、核酸等)与微纳生物粒子(细胞外囊泡、病毒、细胞等)检测中的应用, 并探讨了微流控热泳技术在生物医学检测领域中面临的挑战与未来发展方向.
刘超 , 田飞 , 邓瑾琦 , 孙佳姝 . 基于微流控热泳的生物传感技术※[J]. 化学学报, 2022 , 80(5) : 679 -689 . DOI: 10.6023/A21120610
The sensitive and specific detection of key molecules and biological micro/nanoparticles in complex biological systems is of great significance for understanding biological processes at multiple levels and scales, uncovering the mechanisms of disease onset and development, and exploring novel biomarkers. Microfluidic biosensors with advantages of microfluidics and biosensing have made significant progress in the precise detection of biological samples with small volumes. Recent years, thermomicrofluidic biosensing that combines thermophoretic migration in a temperature gradient and homogenous signal amplification strategies has realized rapid, sensitive, in situ detection of biomolecules and biological micro/ nanoparticles in complex biological systems. Different thermomicrofluidic biosensing strategies, including microscale thermophoresis (MST), thermophoresis-convection coupling, thermophoresis-diffusiophoresis coupling, and thermophoresis-electrophoresis coupling were presented. The fundamentals, features, and applications of these strategies in detecting biomolecules (protein, nucleic acids, etc.) and biological micro/nanoparticles (extracellular vesicles, viral particles, cells, etc.) were summarized. The challenge and future directions for the application of thermomicrofluidic sensing in biomedical detection were discussed.
Key words: thermophoresis; microfluidic; multi-physics coupling; biosensing
[1] | Wan, J. C. M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J. D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Nat. Rev. Cancer 2017, 17, 223. |
[2] | Borrebaeck, C. A. K. Nat. Rev. Cancer 2017, 17, 199. |
[3] | Tian, F.; Liu, C.; Lin, L.; Chen, Q.; Sun, J. TrAC, Trends Anal. Chem. 2019, 117, 128. |
[4] | Kalluri, R.; LeBleu, V. S. Science 2020, 367, eaau6977. |
[5] | Kevadiya, B. D.; Machhi, J.; Herskovitz, J.; Oleynikov, M. D.; Blomberg, W. R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; Senan, A. M.; Gorantla, S.; McMillan, J.; Edagwa, B.; Eisenberg, R.; Gurumurthy, C. B.; Reid, S. P. M.; Punyadeera, C.; Chang, L.; Gendelman, H. E. Nat. Mater. 2021, 20, 593. |
[6] | Möller, A.; Lobb, R. J. Nat. Rev. Cancer 2020, 20, 697. |
[7] | Lim, C. Z. J.; Zhang, Y.; Chen, Y.; Zhao, H.; Stephenson, M. C.; Ho, N. R. Y.; Chen, Y.; Chung, J.; Reilhac, A.; Loh, T. P.; Chen, C. L. H.; Shao, H. Nat. Commun. 2019, 10, 1144. |
[8] | Tsokos, G. C. Nat. Immunol. 2020, 21, 605. |
[9] | Ma, Q.-L.; Feng, N.; Ju, H.-X. Acta Chim. Sinica 2020, 78, 1213. (in Chinese) |
[9] | (马秋琳, 冯楠, 鞠熀先, 化学学报, 2020, 78, 1213.) |
[10] | Li, Y.-Y.; Peng, Y.; Lu, H.-J. Acta Chim. Sinica 2021, 79, 705. (in Chinese) |
[10] | (李月悦, 彭叶, 陆豪杰, 化学学报, 2021, 79, 705.) |
[11] | Li, Y.; Wang, Y.; Xie, X.-L.; Zhang, J.; Tang, B. Acta Chim. Sinica 2021, 79, 36. (in Chinese) |
[11] | (李勇, 王栩, 解希雷, 张建, 唐波, 化学学报, 2021, 79, 36.) |
[12] | Wu, L.; Qu, X. Chem. Soc. Rev. 2015, 44, 2963. |
[13] | Kwong, G. A.; Ghosh, S.; Gamboa, L.; Patriotis, C.; Srivastava, S.; Bhatia, S. N. Nat. Rev. Cancer 2021, 21, 655. |
[14] | Lu, J.-M.; Wang, H.-F.; Pan, J.-Z.; Fang, Q. Acta Chim. Sinica 2021, 79, 809. (in Chinese) |
[14] | (卢佳敏, 王慧峰, 潘建章, 方群, 化学学报, 2021, 79, 809.) |
[15] | Su, Y.-Y.; Peng, T.-H.; Xing, F.-F.; Li, D.; Fan, C.-H. Acta Chim. Sinica 2017, 75, 1036. (in Chinese) |
[15] | (苏莹莹, 彭天欢, 邢菲菲, 李迪, 樊春海, 化学学报, 2017, 75, 1036.) |
[16] | Lin, L.; Hill, E. H.; Peng, X.; Zheng, Y. Acc. Chem. Res. 2018, 51, 1465. |
[17] | Niether, D.; Wiegand, S. J. Phys.-Condes. Matter 2019, 31, 503003. |
[18] | Chen, J.; Loo, J. F.-C.; Wang, D.; Zhang, Y.; Kong, S.-K.; Ho, H.-P. Adv. Opt. Mater. 2020, 8, 1900829. |
[19] | Tian, F.; Han, Z.; Deng, J.; Liu, C.; Sun, J. View 2021, 2, 20200148. |
[20] | Gooding, J. J.; Gaus, K. Angew. Chem., nt. Ed. 2016, 55, 11354. |
[21] | Wienken, C. J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Nat. Commun. 2010, 1, 100. |
[22] | Baaske, P.; Wienken, C. J.; Reineck, P.; Duhr, S.; Braun, D. Angew. Chem.,Int. Ed. 2010, 49, 2238. |
[23] | Asmari, M.; Ratih, R.; Alhazmi, H. A.; El Deeb, S. Methods 2018, 146, 107. |
[24] | Braun, D.; Libchaber, A. Phys. Rev. Lett. 2002, 89, 188103. |
[25] | Duhr, S.; Braun, D. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 19678. |
[26] | Würger, A. Phys. Rev. Lett. 2008, 101, 108302. |
[27] | Jerabek-Willemsen, M.; Wienken, C. J.; Braun, D.; Baaske, P.; Duhr, S. Assay Drug Dev. Technol. 2011, 9, 342. |
[28] | Duhr, S.; Braun, D. Phys. Rev. Lett. 2006, 96, 168301. |
[29] | Putnam, S. A.; Cahill, D. G.; Wong, G. C. L. Langmuir 2007, 23, 9221. |
[30] | Iacopini, S.; Piazza, R. Europhys. Lett. 2003, 63, 247. |
[31] | Duhr, S.; Arduini, S.; Braun, D. Eur. Phys. J. E: Soft Matter Biol. Phys. 2004, 15, 277. |
[32] | Piazza, R.; Guarino, A. Phys. Rev. Lett. 2002, 88, 208302. |
[33] | Seidel, S. A. I.; Wienken, C. J.; Geissler, S.; Jerabek-Willemsen, M.; Duhr, S.; Reiter, A.; Trauner, D.; Braun, D.; Baaske, P. Angew. Chem., nt. Ed. 2012, 51, 10656. |
[34] | Shang, X.; Marchioni, F.; Evelyn, C. R.; Sipes, N.; Zhou, X.; Seibel, W.; Wortman, M.; Zheng, Y. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 3155. |
[35] | Möller, F. M.; Kieß, M.; Braun, D. J. Am. Chem. Soc. 2016, 138, 5363. |
[36] | Liu, T.; Zhang, H.; Sun, L.; Zhao, D.; Liu, P.; Yan, M.; Zaidi, N.; Izadmehr, S.; Gupta, A.; Abu-Amer, W.; Luo, M.; Yang, J.; Ou, X.; Wang, Y.; Bai, X.; Wang, Y.; New, M. I.; Zaidi, M.; Yuen, T.; Liu, C. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7683. |
[37] | Lee, G.-Y.; Min, P.; Kang, M.-J.; Langer, K.; Jose, J.; Pyun, J.-C. Sens. Actuator, B 2018, 258, 1131. |
[38] | Lee, G.-Y.; Bong, J.-H.; Jung, J.; Kang, M.-J.; Jose, J.; Pyun, J.-C. Biosens. Bioelectron. 2020, 156, 112110. |
[39] | Franz, P.; Gassl, V.; Topf, A.; Eckelmann, L.; Iorga, B.; Tsiavaliaris, G. Biosens. Bioelectron. 2020, 169, 112616. |
[40] | Stein, J. A. C.; Ianeselli, A.; Braun, D. Angew. Chem., nt. Ed. 2021, 60, 13988. |
[41] | Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D. W.; Simpson, R. J. Nat. Rev. Clin. Oncol. 2018, 15, 617. |
[42] | Huang, M.; Yang, J.; Wang, T.; Song, J.; Xia, J.; Wu, L.; Wang, W.; Wu, Q.; Zhu, Z.; Song, Y.; Yang, C. Angew. Chem., nt. Ed. 2020, 59, 4800. |
[43] | Braun, M.; Bregulla, A. P.; Günther, K.; Mertig, M.; Cichos, F. Nano Lett. 2015, 15, 5499. |
[44] | Fränzl, M.; Thalheim, T.; Adler, J.; Huster, D.; Posseckardt, J.; Mertig, M.; Cichos, F. Nat. Methods 2019, 16, 611. |
[45] | Braun, M.; Cichos, F. ACS Nano 2013, 7, 11200. |
[46] | Duhr, S.; Braun, D. Appl. Phys. Lett. 2005, 86, 131921. |
[47] | Baaske, P.; Weinert, F. M.; Duhr, S.; Lemke, K. H.; Russell, M. J.; Braun, D. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9346. |
[48] | Mast, C. B.; Schink, S.; Gerland, U.; Braun, D. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 8030. |
[49] | Kreysing, M.; Keil, L.; Lanzmich, S.; Braun, D. Nat. Chem. 2015, 7, 203. |
[50] | Mast, C. B.; Braun, D. Phys. Rev. Lett. 2010, 104, 188102. |
[51] | Liu, C.; Zhao, J.; Tian, F.; Cai, L.; Zhang, W.; Feng, Q.; Chang, J.; Wan, F.; Yang, Y.; Dai, B.; Cong, Y.; Ding, B.; Sun, J.; Tan, W. Nat. Biomed. Eng. 2019, 3, 183. |
[52] | Zhang, L.; Wan, S.; Jiang, Y.; Wang, Y.; Fu, T.; Liu, Q.; Cao, Z.; Qiu, L.; Tan, W. J. Am. Chem. Soc. 2017, 139, 2532. |
[53] | Tian, F.; Zhang, S.; Liu, C.; Han, Z.; Liu, Y.; Deng, J.; Li, Y.; Wu, X.; Cai, L.; Qin, L.; Chen, Q.; Yuan, Y.; Liu, Y.; Cong, Y.; Ding, B.; Jiang, Z.; Sun, J. Nat. Commun. 2021, 12, 2536. |
[54] | Li, Y.; Deng, J.; Han, Z.; Liu, C.; Tian, F.; Xu, R.; Han, D.; Zhang, S.; Sun, J. J. Am. Chem. Soc. 2021, 143, 1290. |
[55] | O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L. C.; Breakefield, X. O. Nat. Rev. Mol. Cell Biol. 2020, 21, 585. |
[56] | Zhao, J.; Liu, C.; Li, Y.; Ma, Y.; Deng, J.; Li, L.; Sun, J. J. Am. Chem. Soc. 2020, 142, 4996. |
[57] | Han, Z.; Wan, F.; Deng, J.; Zhao, J.; Li, Y.; Yang, Y.; Jiang, Q.; Ding, B.; Liu, C.; Dai, B.; Sun, J. Nano Today 2021, 38, 101203. |
[58] | Abécassis, B.; Cottin-Bizonne, C.; Ybert, C.; Ajdari, A.; Bocquet, L. Nat. Mater. 2008, 7, 785. |
[59] | Rasmussen, M. K.; Pedersen, J. N.; Marie, R. Nat. Commun. 2020, 11, 2337. |
[60] | Jiang, H.-R.; Wada, H.; Yoshinaga, N.; Sano, M. Phys. Rev. Lett. 2009, 102, 208301. |
[61] | Maeda, Y. T.; Buguin, A.; Libchaber, A. Phys. Rev. Lett. 2011, 107, 038301. |
[62] | Maeda, Y. T.; Tlusty, T.; Libchaber, A. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17972. |
[63] | Deng, J.; Tian, F.; Liu, C.; Liu, Y.; Zhao, S.; Fu, T.; Sun, J.; Tan, W. J. Am. Chem. Soc. 2021, 143, 7261. |
[64] | Yu, L.-H.; Chen, Y.-F. Anal. Chem. 2015, 87, 2845. |
[65] | Dietzel, M.; Hardt, S. Phys. Rev. Lett. 2016, 116, 225901. |
[66] | Li, J.; Zheng, Y. Acc Mater. Res. 2021, 2, 352. |
[67] | Lin, L.; Zhang, J.; Peng, X.; Wu, Z.; Coughlan, A. C. H.; Mao, Z.; Bevan, M. A.; Zheng, Y. Sci. Adv. 2017, 3, e1700458. |
[68] | Lin, L.; Peng, X.; Mao, Z.; Wei, X.; Xie, C.; Zheng, Y. Lab Chip 2017, 17, 3061. |
[69] | Lin, L.; Peng, X.; Wang, M.; Scarabelli, L.; Mao, Z.; Liz-Marzán, L. M.; Becker, M. F.; Zheng, Y. ACS Nano 2016, 10, 9659. |
[70] | Lin, L.; Wang, M.; Peng, X.; Lissek, E. N.; Mao, Z.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H. E.; Korgel, B. A.; Liz-Marzán, L. M.; Florin, E.-L.; Zheng, Y. Nat. Photonics 2018, 12, 195. |
[71] | Lin, L.; Peng, X.; Wei, X.; Mao, Z.; Xie, C.; Zheng, Y. ACS Nano 2017, 11, 3147. |
[72] | Hill, E. H.; Li, J.; Lin, L.; Liu, Y.; Zheng, Y. Langmuir 2018, 34, 13252. |
/
〈 |
|
〉 |