综述

活性氧捕获材料的研究进展

  • 赵晋源 ,
  • 张乾 ,
  • 王坚 ,
  • 张琦 ,
  • 李恒 ,
  • 杜亚平
展开
  • a 西安理工大学理学院 西安 710054
    b 西安市中心医院肛肠外科 西安 710003
    c 南开大学材料科学与工程学院&国家新材料研究院 天津市稀土材料与应用重点实验室 南开大学稀土与无机功能材料研究中心 天津 300350

赵晋源, 男, 西安理工大学理学院材料与化工专业在读硕士研究生, 主要研究方向为功能分子设计与合成.

张乾, 男, 博士毕业于加拿大University of Montreal化学系, 现西安理工大学教授. 主要研究方向为功能分子设计、高分子与稀土材料、锂离子电池固态电解质和电子封装材料等.

李恒, 男, 毕业于西安交通大学医学部, 现西安市中心医院肛肠外科主治医师, 主要研究兴趣为肛肠与消化道外科、结直肠肿瘤、氧化应激及病理分析等.

杜亚平, 男, 博士毕业于北京大学化学与分子工程学院, 现南开大学教授, 博士生导师. 主要研究方向为新型稀土材料的可控合成、结构设计及其在光、电、催化和生物医学等领域的应用.

收稿日期: 2021-12-27

  网络出版日期: 2022-02-24

基金资助

国家自然科学基金(21971117); 京津冀协同创新项目(19YFSLQY00030); 天津市自然科学基金杰青(20JCJQJC00130); 天津市自然科学基金重点项目(20JCZDJC00650); 天津市稀土材料与应用重点实验室(ZB19500202); 111项目(B18030)

Advances in the Scavenging Materials for Reactive Oxygen Species

  • Jinyuan Zhao ,
  • Qian Zhang ,
  • Jian Wang ,
  • Qi Zhang ,
  • Heng Li ,
  • Yaping Du
Expand
  • a School of Science, Xi'an University of Technology, Xi'an, 710054
    b Department of Anorectal Surgery, Xi'an Central Hospital, Xi'an, 710003
    c Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350

Received date: 2021-12-27

  Online published: 2022-02-24

Supported by

National Natural Science Foundation of China(21971117); Beijing-Tianjin-Hebei Collaborative Innovation Project(19YFSLQY00030); Outstanding Youth Project of Tianjin Natural Science Foundation(20JCJQJC00130); Key Project of Tianjin Natural Science Foundation(20JCZDJC00650); Tianjin Key Lab for Rare Earth Materials and Applications(ZB19500202); 111 Project(B18030)

摘要

生命从呼吸中获得氧气, 氧气再进一步在线粒体中将糖类等氧化得到能量, 提供给生命过程使用. 然而在氧化过程中, 会生成高度活泼的活性氧. 当体内控制失衡的时候, 它的浓度会大大增加, 发生氧化应激, 对机体产生不可逆的破坏, 引起衰老、肿瘤、心血管以及神经性疾病等. 抵抗活性氧的核心物质是抗氧化物, 它的存在使氧化应激受到控制, 从而保护机体免遭伤害. 本文对国内外近年来在活性氧自由基捕获方面的研究进行系统的综述, 通过梳理, 提出研究的金字塔型三级结构. 设计抗氧化物大分子与无机纳米粒子复合的纳米杂化自由基捕获器可以一方面解决无机纳米粒子的毒性问题, 另一方面还可以赋予纳米粒子额外的功能. 期待这篇综述文章能为改性纳米粒子捕捉活性氧提供一些有益思路, 为功能高分子材料与杂化纳米技术在生物医学领域的探索提供借鉴.

本文引用格式

赵晋源 , 张乾 , 王坚 , 张琦 , 李恒 , 杜亚平 . 活性氧捕获材料的研究进展[J]. 化学学报, 2022 , 80(4) : 570 -580 . DOI: 10.6023/A21120586

Abstract

Life obtains oxygen from breathing, which further oxidizes carbohydrates and acquires energy in mitochondria to support life processes. However, in the process of oxidation, highly reactive oxygen species (ROS) will be generated. When the human bodies lose its control on ROS, its concentration will be greatly increased, causing oxidative stress and irreversible damage to the body, thus resulting in aging, tumor, cardiovascular and neurological diseases, etc. Antioxidants are the core substances that resist ROS, and control the oxidative stress and protect the body from being damaged. In this paper, we briefly review the research progress on the scavenging materials for ROS in recent years, and see a pyramidic structure with three levels on the design of related scavenging materials. The design of nano-hybrid free radical scavenger might not only solve the toxicity problem of inorganic nanoparticles, but also afford the system with the additional functions. Hopefully, this review may enlighten some clues for the people working in the area to design highly functional ROS scavenger materials with high performances.

参考文献

[1]
Donald, V.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry, John Wiley and Sons, New York, 2006, pp. 3-23.
[2]
Chance, B.; Sies, H.; Boveris, A. Physiol. Rev. 1979, 59, 527.
[3]
Shigenaga, M. K.; Hagen, T. M.; Ames, B. N. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 10771.
[4]
Durackova, Z. In Systems Biology of Free Radicals and Antioxidants, Ed.: Laher, I., Springer, Berlin, 2014, pp. 3-33.
[5]
Duracková, Z. Physiol. Res. 2010, 59, 459.
[6]
Betteridge, D. J. Metab., Clin. Exp. 2000, 49, S3.
[7]
Blake, D.; Winyard, P. G., Immunopharmacology of Free Radical Species, Academic Press., London, 1995, pp. 23-245.
[8]
Rani, V.; Singh Yadav, U. C. Free Radicals in Human Health and Disease, Springer, New York, 2015, pp. 3-15.
[9]
Gadoth, N.; Gobel, H. H. Oxidative Stress and Free Radical Damage in Neurology, Humana Press, New York, 2011, pp. 191-223.
[10]
Zheng, J. C.; Zhang, J.; Zhang, X. K.; Guo, Z. P.; Wu, W. J.; Chen, Z.; Li, J. T. Oxid. Med. Cell. Longev. 2021, 2021, 6681815.
[11]
Lennicke, C.; Cocheme, H. M. Biochem. Soc. Trans. 2020, 48, 366.
[12]
Shields, H. J.; Traa, A.; Van Raamsdonk, J. M. Front. Cell Dev. Biol. 2021, 9, 628157.
[13]
Yegorov, Y. E. Mol. Biol. 2020, 54, 355.
[14]
Babu, K. R.; Tay, Y. Int. J. Mol. Sci. 2019, 20, 5335.
[15]
Kim, Y. S.; Kim, S.; Kang, H. C.; Shim, M. S. J. Ind. Eng. Chem. 2019, 75, 238.
[16]
Ruan, C. P.; Su, K. H.; Zhao, D. M.; Lu, A.; Zhong, C. R. Front Chem. 2021, 9, 649158.
[17]
Sabbatino, F.; Conti, V.; Liguori, L.; Polcaro, G.; Corbi, G.; Manzo, V.; Tortora, V.; Carlomagno, C.; Vecchione, C.; Filippelli, A.; Pepe, S. Life-Basel 2021, 11, 105.
[18]
Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Antioxidants 2020, 9, 864.
[19]
Wang, M. X.; Liu, Y.; Liang, Y.; Naruse, K.; Takahashi, K. Front. Cardiovasc. Med. 2021, 8, 649785.
[20]
Rendra, E.; Riabov, V.; Mossel, D. M.; Sevastyanova, T.; Harmsen, M. C.; Kzhyshkowska, J. Immunobiology 2019, 224, 242.
[21]
Priyanka, K.; Singh, S. J. Drug Delivery Sci. Technol. 2019, 52, 355.
[22]
Yang, J. P.; Qi, J. C.; Xiu, B. X.; Yang, B.; Niu, C. H.; Yang, H. J. Invest. Surg. 2019, 32, 97.
[23]
Zhang, J. H.; Fu, Y.; Yang, P.; Liu, X. H.; Li, Y. W.; Gu, Z. P. Adv. Mater. Interfaces 2020, 7, 2000632.
[24]
Liang, Y.; Wu, B. B.; Zhang, Y. L.; Liu, H. L. Sci. Total Environ. 2022, 804, 150015.
[25]
Moloney, J. N.; Cotter, T. G. Semin. Cell Dev. Biol. 2018, 80, 50.
[26]
Gomez, X.; Sanon, S.; Zambrano, K.; Asquel, S.; Bassantes, M.; Morales, J. E.; Otanez, G.; Pomaquero, C.; Villarroel, S.; Zurita, A.; Calvache, C.; Celi, K.; Contreras, T.; Corrales, D.; Naciph, M. B.; Pena, J.; Caicedo, A. Npj Microgravity 2021, 7, 1.
[27]
Borgstahl, G. E. O.; Parge, H. E.; Hickey, M. J.; Johnson, M. J.; Boissinot, M.; Hallewell, R. A.; Lepock, J. R.; Cabelli, D. E.; Tainer, J. A. Biochemistry (Mosc). 1996, 35, 4287.
[28]
Miyazawa, T.; Burdeos, G. C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Iubmb Life 2019, 71, 430.
[29]
Xi, Y. M.; Kong, F. T.; Chi, Z. Y. Front. Bioeng. Biotechnol. 2021, 8, 613768.
[30]
Choi, J.; Lim, J. W.; Kim, H. Molecules 2021, 26, 3127.
[31]
Bao, Z. Q.; Dai, X. S.; Wang, P.; Tao, Y. S.; Chai, D. M. Cell Cycle 2019, 18, 1379.
[32]
Zhu, Z. D.; Li, R. N.; Fan, X. T.; Lv, Y. H.; Zheng, Y.; Hoque, S. A. M.; Wu, D.; Zeng, W. X. Oxid. Med. Cell. Longevity 2019, 2019, 5921503.
[33]
Yu, T. Z.; Dohl, J.; Elenberg, F.; Chen, Y. F.; Deuster, P. J. Cell. Physiol. 2019, 234, 6371.
[34]
He, W. S.; Rui, J. X.; Wang, Q. Z.; Chen, Z. Y. Eur. J. Lipid Sci. Technol. 2021, 123, 2000398.
[35]
Nagai, T.; Kawashima, T.; Suzuki, N.; Tanoue, Y.; Kai, N.; Nagashima, T. J. Food, Agric. Environ. 2007, 5, 137.
[36]
Chat, O. A.; Najar, M. H.; Dar, A. A. Colloids Surf., A 2013, 436, 343.
[37]
Ihl, M.; Bifani, V.; Ramirez, C.; Rubilar, M.; Meneses, C.; Infante, R.; Motomura, Y.; Seguel, I. Acta Hortic. 2006, 712, 617.
[38]
Xi, J.; Guo, R. J. Dispersion Sci. Technol. 2009, 30, 857.
[39]
Karaseva, E. I.; Nikiforova, T. V.; Metelitsa, D. I. Appl. Biochem. Microbiol. 2001, 37, 406.
[40]
Ohara, K.; Ichimura, Y.; Tsukamoto, K.; Ogata, M.; Nagaoka, S.; Mukai, K. Bull. Chem. Soc. Jpn. 2006, 79, 1501.
[41]
Jabeen, S.; Chat, O. A.; Rather, G. M.; Dar, A. A. Food Res. Int. 2013, 51, 294.
[42]
Mukai, K.; Oka, W.; Watanabe, K.; Egawa, Y.; Nagaoka, S.; Terao, J. J. Phys. Chem. A 1997, 101, 3746.
[43]
Lund, M. N.; Liang, R.; Zhang, J. P.; Han, R. M.; Tian, Y. X.; Skovsgaard, T. F.; Nielsen, J.; Skibsted, L. H. Food Res. Int. 2013, 54, 230.
[44]
Lyamzaev, K. G.; Pustovidko, A. V.; Simonyan, R. A.; Rokitskaya, T. I.; Domnina, L. V.; Ivanova, O. Y.; Severina, I. I.; Sumbatyan, N. V.; Korshunova, G. A.; Tashlitsky, V. N.; Roginsky, V. A.; Antonenko, Y. N.; Skulachev, M. V.; Chernyak, B. V.; Skulachev, V. P. Pharm. Res. 2011, 28, 2883.
[45]
Ouchi, A.; Nakano, M.; Nagaoka, S.; Mukai, K. J. Agric. Food Chem. 2009, 57, 450.
[46]
Panya, A.; Laguerre, M.; Bayrasy, C.; Lecomte, J.; Villeneuve, P.; McClements, D. J.; Decker, E. A. J. Agric. Food Chem. 2012, 60, 2692.
[47]
Reddy, K. K.; Ravinder, T.; Prasad, R. B. N.; Kanjilal, S. J. Agric. Food Chem. 2011, 59, 564.
[48]
Carini, M.; Facino, R. M.; Aldini, G.; Calloni, M. T.; Bombardelli, E.; Morazzoni, P. Int. J. Cosmet. Sci. 1998, 20, 203.
[49]
Takashima, M.; Shichiri, M.; Hagihara, Y.; Yoshida, Y.; Niki, E. Free Radic. Res. 2012, 46, 1406.
[50]
de Wergifosse, B.; Dubuisson, M.; Marchand-Brynaert, J.; Trouet, A.; Rees, J. F. Free Radic. Biol. Med. 2004, 36, 278.
[51]
Roda, A.; Pasini, P.; Russo, C.; Baraldini, M.; Feroci, G.; Kricka, L. J.; Gioacchini, A. M. Falk Symp. 1997, 93, 246.
[52]
Lü, J. M.; Lin, P. H.; Yao, Q.; Chen, C. J. Cell. Mol. Med. 2010, 14, 840.
[53]
Zhao, L.; Gao, M.; Ma, Y. F. Acta Zoonutr. Sin. 2017, 29, 1861. (in Chinese)
[53]
(赵磊, 高民, 马燕芬, 动物营养学报, 2017, 29, 1861.)
[54]
Chen, W. J.; Liang, G. Q.; Chen, C. L. Shanghai Journal of Traditional Chinese Medicine. 2012, 46, 88. (in Chinese)
[54]
(陈伟杰, 梁国庆, 陈春雷, 张晓峰, 上海中医药杂志, 2012, 46, 88.)
[55]
Krishnaswamy, R.; Devaraj, S. N.; Padma, V. V. Free Radic. Biol. Med. 2010, 49, 50.
[56]
Ling, J. X.; Wei, F.; Li, N.; Li, J. L.; Chen, L. J.; Liu, Y. Y.; Luo, F.; Xiong, H. R.; Hou, W.; Yang, Z. Q. Acta Pharmacol. Sin. 2012, 33, 1533.
[57]
Zhu, S.; Ma, C. Y.; Ai, L. Z.; Lou, Z. X.; Wang, H. X. Xiandai Shipin Keji 2014, 30, 22. (in Chinese)
[57]
(朱松, 马朝阳, 艾连中, 娄在祥, 王洪新, 现代食品科技, 2014, 30, 22.)
[58]
Hu, S.; Li, H.; Lu, Q. Y. Cereals Oils 2015, 28, 1. (in Chinese)
[58]
(胡思, 李华, 陆启玉, 粮食与油脂, 2015, 28, 1.)
[59]
Zhang, Y. N.; Liang, P.; Xie, J. Y.; Zhang, Y. Food and Nutrition in China. 2019, 25, 67. (in Chinese)
[59]
(张雅楠, 梁鹏, 谢静仪, 张怡, 中国食物与营养, 2019, 25, 67.)
[60]
Radomska-Leśniewska, D. M.; Hevelke, A.; Skopiński, P.; Bałan, B.; Jóźwiak, J.; Rokicki, D.; Skopińska-Różewska, E.; Białoszewska, A. Pharmacol. Rep. 2016, 68, 462.
[61]
Manea, A. Cell Tissue Res. 2010, 342, 325.
[62]
Ushio-Fukai, M. Cardiovasc. Res. 2006, 71, 226.
[63]
Nijmeh, J.; Moldobaeva, A.; Wagner, E. M. Am. J. Physiol-Lung C 2010, 299, L535.
[64]
Ushio-Fukai, M.; Nakamura, Y. Cancer Lett. 2008, 266, 37.
[65]
Stone, J. R.; Collins, T. Endothelium: Journal of Endothelial Cell Research 2002, 9, 231.
[66]
Yamamoto, A. J. Atheroscler. Thromb. 2008, 15, 304.
[67]
Suh, N.; Wang, Y.; Honda, T.; Gribble, G. W.; Dmitrovsky, E.; Hickey, W. F.; Maue, R. A.; Place, A. E.; Porter, D. M.; Spinella, M. J.; Williams, C. R.; Wu, G.; Dannenberg, A. J.; Flanders, K. C.; Letterio, J. J.; Mangelsdorf, D. J.; Nathan, C. F.; Nguyen, L.; Porter, W. W.; Ren, R. F.; Roberts, A. B.; Roche, N. S.; Subbaramaiah, K.; Sporn, M. B. Cancer Res. 1999, 59, 336.
[68]
Liby, K. T.; Sporn, M. B. Pharmacol. Rev. 2012, 64, 972.
[69]
Honda, T.; Rounds, B. V.; Gribble, G. W.; Suh, N.; Wang, Y.; Sporn, M. B. Bioorg. Med. Chem. Lett. 1998, 8, 2711.
[70]
Reddy, K. K.; Ravinder, T.; Kanjilal, S. Food Chem. 2012, 134, 2201.
[71]
Reddy, K. K.; Shanker, K. S.; Ravinder, T.; Prasad, R. B. N.; Kanjilal, S. Eur. J. Lipid Sci. Technol. 2010, 112, 600.
[72]
Berger, M. Nano-Society: Pushing the Boundaries of Technology, Royal Society of Chemistry, Cambridge, UK, 2009, pp. 45-64.
[73]
Liu, J.; Ma, L.; Zhang, G.; Chen, Y.; Wang, Z. Bioconjugate Chem. 2021, 32, 2269.
[74]
Yim, D.; Lee, D. E.; So, Y.; Choi, C.; Son, W.; Jang, K.; Yang, C. S.; Kim, J. H. ACS Nano 2020, 14, 10324.
[75]
Yim, D.; Kim, J. E.; Kim, H. I.; Yang, J. K.; Kang, T. W.; Nam, J.; Han, S. H.; Jun, B.; Lee, C. H.; Lee, S. U.; Kim, J. W.; Kim, J. H. Small 2018, 14, 1800026.
[76]
Wang, Z. Z.; Shen, X. M.; Gao, X. F.; Zhao, Y. L. Nanoscale 2019, 11, 13289.
[77]
Zhao, H. Q.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. J. Mater. Chem. B 2021, 9, 6939.
[78]
Xia, L.; Cheng, Z.; Zhu, H.; Yang, Z. Acta Chim. Sinica 2019, 77, 172. (in Chinese)
[78]
(夏雷, 程震, 朱华, 杨志, 化学学报, 2019, 77, 172.)
[79]
Liu, Y.; Ai, K.; Ji, X.; Askhatova, D.; Du, R.; Lu, L.; Shi, J. J. Am. Chem. Soc. 2017, 139, 856.
[80]
Zhao, C.; Li, Z.; Chen, J.; Su, L.; Wang, J.; Chen, D. S.; Ye, J.; Liao, N.; Yang, H.; Song, J.; Shi, J. Adv. Mater. 2021, 33, 2102391.
[81]
Zennaro, L.; Rossetto, M.; Vanzani, P.; De Marco, V.; Scarpa, M.; Battistin, L.; Rigo, A. Arch. Biochem. Biophys. 2007, 462, 38.
[82]
Fan, X. X.; Xu, M. Z.; Leung, E. L. H.; Jun, C.; Yuan, Z.; Liu, L. Nano-Micro Lett. 2020, 12, 1.
[83]
Zhou, H.; Yang, Q.; Wang, X. Food Chem. 2014, 161, 136.
[84]
Laguerre, M.; Hugouvieux, V.; Cavusoglu, N.; Aubert, F.; Lafuma, A.; Fulcrand, H.; Poncet-Legrand, C. Food Chem. 2014, 149, 114.
[85]
Lund, M. N.; Liang, R.; Zhang, J. P.; Han, R. M.; Tian, Y. X.; Skovsgaard, T. F.; Nielsen, J.; Skibsted, L. H. Food Res. Int. 2013, 54, 230.
[86]
Zhou, J.; Liu, W.; Zhao, X. Y.; Xian, Y. F.; Wu, W.; Zhang, X.; Zhao, N. N.; Xu, F. J.; Wang, C. Y. Adv. Sci. 2021, 8, 2100505.
[87]
Li, J. J.; Du, R.; Bian, Q.; Zhang, D. P.; Gao, S. Q.; Yuan, A. R.; Ying, X. Y.; Shen, Y. Q.; Gao, J. Q. Int. J. Pharm. 2021, 597, 120328.
[88]
Yoshitomi, T.; Miyamoto, D.; Nagasaki, Y. Biomacromolecules 2009, 10, 596.
[89]
Pua, M. L.; Yoshitomi, T.; Chonpathompikunlert, P.; Hirayama, A.; Nagasaki, Y. J. Control. Release 2013, 172, 914.
[90]
Yoshitomi, T.; Sha, S.; Vong, L. B.; Chonpathompikunlert, P.; Matsui, H.; Nagasaki, Y. Ther. Delivery 2014, 5, 29.
[91]
Bobko, A. A.; Kirilyuk, I. A.; Grigor'ev, I. A.; Zweier, J. L.; Khramtsov, V. V. Free Radic. Biol. Med. 2007, 42, 404.
[92]
Saphier, O.; Silberstein, T.; Shames, A. I.; Likhtenshtein, G. I.; Maimon, E.; Mankuta, D.; Mazor, M.; Katz, M.; Meyerstein, D.; Meyerstein, N. Free Radic. Res. 2003, 37, 301.
[93]
Park, H.; Kim, S.; Kim, S.; Song, Y.; Seung, K.; Hong, D.; Khang, G.; Lee, D. Biomacromolecules 2010, 11, 2103.
[94]
Lee, D.; Khaja, S.; Velasquez-Castano, J. C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W. R.; Murthy, N. Nat. Mater. 2007, 6, 765.
[95]
Dickinson, B. C.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 9638.
[96]
Kim, S.; Seong, K.; Kim, O.; Kim, S.; Seo, H.; Lee, M.; Khang, G.; Lee, D. Biomacromolecules 2010, 11, 555.
[97]
Cho, S.; Hwang, O.; Lee, I.; Lee, G.; Yoo, D.; Khang, G.; Kang, P. M.; Lee, D. Adv. Funct. Mater. 2012, 22, 4038.
[98]
Kwon, J.; Kim, J.; Park, S.; Khang, G.; Kang, P. M.; Lee, D. Biomacromolecules 2013, 14, 1618.
[99]
Zhou, J.; Tsai, Y. T.; Weng, H.; Tang, L. Free Radic. Biol. Med. 2012, 52, 218.
[100]
Jiao, C. P.; Liu, Y. Y.; Lu, W. J.; Zhang, P. P.; Wang, Y. F. Chin. J. Org. Chem. 2019, 39, 591. (in Chinese)
[100]
(矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风, 有机化学, 2019, 39, 591.)
[101]
Hou, J. T.; Li, K.; Qin, C. Q.; Yu, X. Q. Chin. J. Org. Chem. 2018, 38, 612. (in Chinese)
[101]
(后际挺, 李坤, 覃彩芹, 余孝其, 有机化学, 2018, 38, 612.)
[102]
Halliwell, B.; Whiteman, M. Br. J. Pharmacol. 2004, 142, 231.
[103]
Huang, L. H.; Wu, J. T.; Su, T. L.; Yang, M. C.; Kuo, Y. L.; Kung, F. C. J. Appl. Polym. Sci. 2009, 113, 3222.
[104]
Selvam, S.; Kundu, K.; Templeman, K. L.; Murthy, N.; García, A. J. Biomaterials 2011, 32, 7785.
[105]
van Lith, R.; Gregory, E. K.; Yang, J.; Kibbe, M. R.; Ameer, G. A. Biomaterials 2014, 35, 8113.
[106]
Yang, J.; van Lith, R.; Baler, K.; Hoshi, R. A.; Ameer, G. A. Biomacromolecules 2014, 15, 3942.
[107]
Ren, K.; Ke, X.; Chen, Z.; Zhao, Y.; He, L.; Yu, P.; Xing, J. Q.; Luo, J.; Xie, J.; Li, J. S. Carbohydr. Polym. 2021, 274, 118672.
[108]
Zhang, H; Wang, K.; Yu, M.; He, P.; Qiao, H.; Zhang, H.; Wang, Z. Biomolecules 2019, 9, 730.
[109]
Wan, L.; Tan, X.; Sun, T.; Sun, Y.; Luo, J.; Li, M. Mater. Sci. Eng., C 2020, 112, 110886.
[110]
Li, M.; Zhuang, B.; Yu, J. Chem. Asian J. 2020, 15, 2060.
[111]
Adibnia, V.; Mirbagheri, M.; Faivre, J.; Robert, J.; Lee, J.; Matyjaszewski, K.; Lee, D. W.; Banquy, X. Prog. Polym. Sci. 2020, 110, 101298.
[112]
Li, Y. J.; Luo, L. J.; Harroun, S. G.; Wei, S. C.; Unnikrishnan, B.; Chang, H. T.; Huang, Y. F.; Lai, J. Y.; Huang, C. C. Nanoscale 2019, 11, 5580.
[113]
Kaplan, D. L.; Singh, A. WO 2004050795A2, 2004.
[114]
Kurisawa, M.; Chung, J. E.; Kim, Y. J.; Uyama, H.; Kobayashi, S. Biomacromolecules 2003, 4, 469.
[115]
He, J. Ph.D. Dissertation, Nankai University, Tianjin, 2013. (in Chinese)
[115]
(贺剑, 博士论文, 南开大学, 天津, 2013.)
[116]
Zhang, A. J.; Zhang, W. J.; Zhang, Y. J.; Guan, Y. Polym. Bull. 2011, 17. (in Chinese)
[116]
(张爱娟, 张文静, 张拥军, 关英, 高分子通报, 2011, 17.)
[117]
Zhang, L. Ph.D. Dissertation, Henan University, Kaifeng, 2013. (in Chinese)
[117]
(张磊, 博士论文, 河南大学, 开封, 2013.)
[118]
Zhang, L.; Jiang, F.; Gao, Y. H.; Zheng, K.; Cui, Y. C. Chem. Res. 2015, 26, 351. (in Chinese)
[118]
(张磊, 江帆, 高亚会, 郑轲, 崔元臣, 化学研究, 2015, 26, 351.)
[119]
Wang, Z. Y.; Wang, S. Q.; Wang, K.; Wu, X. Y.; Tu, C. X.; Gao, C. Y. Macromol. Biosci. 2021, 21, 2100280.
[120]
Zhao, T. J.; Wu, W.; Sui, L. H.; Huang, Q.; Nan, Y. Y.; Liu, J. H.; Ai, K. L. Bioact. Mater. 2022, 7, 47.
[121]
Liu, J.; Hu, D. D.; Zhou, Q.; Shen, Y. Q. Sci. Sin. Chim. 2019, 49, 1192. (in Chinese)
[121]
(刘婧, 胡豆豆, 周泉, 申有青, 中国科学: 化学, 2019, 49, 1192.)
[122]
Yao, Y. J.; Li, A. Q.; Wang, S. Q.; Lu, Y. W.; Xie, J. Q.; Zhang, H. L.; Zhang, D. T.; Ding, J.; Wang, Z. Y.; Tu, C. X.; Shen, L. Y.; Zhuang, L. N.; Zhu, Y.; Gao, C. Y. Biomaterials 2022, 282, 121382.
[123]
Thi, P. L.; Lee, Y.; Tran, D. L.; Thi, T. T. H.; Kang, J. I.; Park, K. M.; Park, K. D. Acta Biomater. 2020, 103, 142.
[124]
Cheng, H.; Shi, Z.; Yue, K.; Huang, X.; Xu, Y.; Gao, C.; Yao, Z.; Zhang, Y. S.; Wang, J. Acta Biomater. 2021, 124, 219.
[125]
Wu, H. B.; Li, F, Y.; Shao, W.; Gao, J. Q.; Ling, D. S. ACS Cent. Sci. 2019, 5, 477.
[126]
Wang, S.; Zheng, H.; Zhou, L.; Cheng, F.; Liu, Z.; Zhang, H.; Wang, L.; Zhang, Q. Nano Lett. 2020, 20, 5149.
[127]
Yang, J.; Liang, J.; Zhu, Y.; Hu, M.; Deng, L.; Cui, W.; Xu, X. Bioact. Mater. 2021, 6, 4801.
[128]
Zhao, X. D.; Pei, D. N.; Yang, Y. X.; Xu, K.; Yu, J.; Zhang, Y. C.; Zhang, Q.; He, G.; Zhang, Y. F.; Li, A.; Cheng, Y. L.; Chen, X. S. Adv. Funct. Mater. 2021, 31, 2009442.
[129]
Qian, F.; Han, Y. H.; Han, Z. Z.; Zhang, D. Y.; Zhang, L.; Zhao, G.; Li, S. S.; Jin, G. L.; Yu, R. T.; Liu, H. M. Biomaterials 2021, 270, 120675.
[130]
Yu, H.; Jin, F. Y.; Liu, D.; Shu, G. F.; Wang, X. J.; Qi, J.; Sun, M. C.; Yang, P.; Jiang, S. P.; Ying, X. Y.; Du, Y. Z. Theranostics 2020, 10, 2342.
[131]
Weng, Q. J.; Sun, H.; Fang, C. Y.; Xia, F.; Liao, H. W.; Lee, J. Y.; Wang, J. C.; Xie, A.; Ren, J. F.; Guo, X.; Li, F. Y.; Yang, B.; Ling, D. S. Nat. Commun. 2021, 12,1436.
[132]
Xie, J. N.; Wang, C. Y.; Wang, N.; Zhu, S.; Mei, L. Q.; Zhang, X.; Yong, Y.; Li, L. L.; Chen, C. Y.; Huang, C. S.; Gu, Z. J.; Li, Y. L.; Zhao, Y. L. Biomaterials 2020, 224, 119940.
[133]
Kim, J.; Kim, H. Y.; Song, S. Y.; Go, S. H.; Sohn, H. S.; Baik, S.; Soh, M.; Kim, K.; Kim, D.; Kim, H. C.; Lee, N.; Kim, B. S.; Hyeon, T. ACS Nano 2019, 13, 3206.
[134]
Cai, G. S.; Wang, S. M.; Zhao, L.; Sun, Y. T.; Yang, D. S.; Lee, R. J.; Zhao, M. H.; Zhang, H.; Zhou, Y. L. Molecules 2019, 24, 192.
[135]
Hao, C. L.; Qu, A. H.; Xu, L. G.; Sun, M. Z.; Zhang, H. Y.; Xu, C. L.; Kuang, H. J. Am. Chem. Soc. 2019, 141, 1091.
[136]
Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Nat. Commun. 2018, 9, 3334.
文章导航

/