理性调控聚合物给体-非富勒烯受体的混溶性制备高效率有机太阳能电池※
收稿日期: 2021-12-31
网络出版日期: 2022-03-07
基金资助
国家自然科学基金(22075287); 国家自然科学基金(52130306); 中科院青年创新促进会项目(2021000060)
Rationally Tuning Blend Miscibility of Polymer Donor and Nonfullerene Acceptor for Constructing Efficient Organic Solar Cells※
Received date: 2021-12-31
Online published: 2022-03-07
Supported by
National Natural Science Foundation of China(22075287); National Natural Science Foundation of China(52130306); Program of Youth Innovation Promotion Association CAS(2021000060)
除了非富勒烯受体的设计与合成, 聚合物给体的选择对非富勒烯太阳能电池的光伏性能同样重要. 本工作设计并合成一种共轭骨架无sp3杂化碳原子的新型非富勒受体(命名为MDB), 并将其作为模型化合物研究给受体混溶性和分子有序堆积对太阳能电池性能的影响. 本工作选择三种宽带隙聚合物给体(PM6、J71和P3HT)与MDB共混来制备太阳能电池. 得益于MDB和PM6之间适度的混溶性, 由二者组成的混合膜表现出合适的相分离, “face-on”的分子取向和更紧密有序的分子堆积, 从而促进了载流子传输, 并抑制了电荷复合. 因此基于PM6:MDB的器件实现了13.26%的优异光电转换效率, 远高于基于J71:MDB (8.16%)和P3HT:MDB (0.45%)的器件. 该工作证明了给体-受体之间合适的混溶性是实现高效率有机太阳能电池的关键因素之一, 这对有机光伏材料的设计与合成具有重要指导意义.
林文源 , 朱清哲 , 马云龙 , 王鹏 , 万硕 , 郑庆东 . 理性调控聚合物给体-非富勒烯受体的混溶性制备高效率有机太阳能电池※[J]. 化学学报, 2022 , 80(6) : 724 -733 . DOI: 10.6023/A21120620
Besides the design and synthesis of nonfullerene acceptors, the selection of polymer donors is also critical in determining the photovoltaic performance of nonfullerene organic solar cells (OSCs). However, the selection criteria of polymer donors for nonfullerene OSCs has been rarely investigated. In this work, a novel nonfullerene acceptor (MDB) with sp3-hybridized-carbon-free ladder-type skeleton was developed and used as a model compound to study the effects of miscibility and molecular ordering in determining the performance of MDB-based solar cells. In order to achieve matched energy levels and complementary absorption, three wide-bandgap polymers (PM6, J71, and P3HT) with different chemical structures were selected to blend with MDB for OSCs. The donor:acceptor miscibilities of the three blends were estimated by contact angle measurements, while their crystallinity and phase separation were investigated by grazing incidence wide-angle X-ray scattering characterization and atomic force microscopy measurement, respectively. The interfacial tension values between MDB and PM6, MDB and J71, as well as MDB and P3HT were determined as 0.49, 0.16, and 2.00 mN•m–1, in that order. Owing to the proper miscibility between MDB and PM6, the resulting blend film exhibits suitable phase separation, “face-on” molecular orientation as well as compact molecular π-π stacking, which promotes carrier transport and suppresses bimolecular recombination. As a result, the best-performance OSC based on PM6:MDB delivered an outstanding PCE of 13.26%. In contrast, J71:MDB-based devices exhibited a lower PCE of 8.16%, due to the excessively high miscibility of J71 and MDB. As for P3HT:MDB-based devices, the poor miscibility between P3HT and MDB provides the driving force for the formation of large phase separation, which leads to an extremely low PCE of 0.45%. This work demonstrates that suitable miscibility is one of the key factors to achieve high-performance OSCs, which is an important guideline for the design and selection of next-generation photovoltaic materials.
| [1] | Chen, Z. Y.; Song, W.; Yu, K. B.; Ge, J. F.; Zhang, J. S.; Xie, L.; Peng, R. X.; Ge, Z. Y. Joule 2021, 5, 2395. |
| [2] | Zhang, M. Q.; Ma, Y. L.; Zheng, Q. D. Acta Phys.-Chim. Sinica 2019, 35, 503. (in Chinese) |
| [2] | (张美琪, 马云龙, 郑庆东, 物理化学学报, 2019, 35, 503.) |
| [3] | Zhao, R. Y.; Liu, J.; Wang, L. X. Acc. Chem. Res. 2020, 53, 1557. |
| [4] | Lin, Y. Z.; Zhao, F. W.; Wu, Y.; Chen, K.; Xia, Y. X.; Li, G. W.; Prasad, S. K. K.; Zhu, J. S.; Huo, L. J.; Bin, H. J.; Zhang, Z. G.; Guo, X.; Zhang, M. J.; Sun, Y. M.; Gao, F.; Wei, Z. X.; Ma, W.; Hodgkiss, J. C.; Bo, Z. S.; Inganas, O.; Li, Y. F.; Zhan, X. W. Adv. Mater. 2017, 29, 1604155. |
| [5] | Lu, M.; Zhou, R. M.; Lu, K.; Wei, Z. X. Acta Chim. Sinica 2021, 79, 284. (in Chinese) |
| [5] | (吕敏, 周瑞敏, 吕琨, 魏志祥, 化学学报, 2021, 79, 284.) |
| [6] | Yang, L.; Gu, W. X.; Yang, Y. F.; Hong, L.; Zhang, X. T.; Xiao, Y.; Wu, X. X.; Peng, A. D.; Huang, H. Small Methods 2018, 2, 1700330. |
| [7] | Wang, S. S.; Qu, Y. P.; Li, S. J.; Ye, F.; Chen, Z. B.; Yang, X. N. Adv. Funct. Mater. 2015, 25, 748. |
| [8] | Li, T. F.; Zhan, X. W. Acta Chim. Sinica 2021, 79, 257. (in Chinese) |
| [8] | (李腾飞, 占肖卫, 化学学报, 2021, 79, 257.) |
| [9] | Chang, S. L.; Cao, F. Y.; Huang, W. C.; Huang, P. K.; Huang, K. H.; Hsu, C. S.; Cheng, Y. J. ACS Energy Lett. 2018, 3, 1722. |
| [10] | Yu, H.; Arunagiri, L.; Zhang, L.; Huang, J. C.; Ma, W.; Zhang, J. Q.; Yan, H. J. Mater. Chem. A 2020, 8, 6501. |
| [11] | Liu, F. B.; Liu, J.; Wang, L. X. Acta Phys.-Chim. Sinica 2019, 35, 251. (in Chinese) |
| [11] | (刘方彬, 刘俊, 王利祥, 物理化学学报, 2019, 35, 251.) |
| [12] | Mishra, A. Energy Environ. Sci. 2020, 13, 4738. |
| [13] | Qin, J. Z.; Chen, Z. H.; Bi, P. Q.; Yang, Y.; Zhang, J. Q.; Huang, Z. Y.; Wei, Z. X.; An, C. B.; Yao, H. F.; Hao, X. T.; Zhang, T.; Cui, Y.; Hong, L.; Liu, C. Y.; Zu, Y. F.; He, C.; Hou, J. H. Energy Environ. Sci. 2021, 14, 5903. |
| [14] | Wang, W. X.; Wang, J. Q.; Zheng, Z.; Hou, J. H. Acta Chim. Sinica 2020, 78, 382. (in Chinese) |
| [14] | (王文璇, 王建邱, 郑众, 侯剑辉, 化学学报, 2020, 78, 382.) |
| [15] | Miao, J. H.; Ding, Z. C.; Liu, J.; Wang, L. X. Acta Chim. Sinica 2021, 79, 545. (in Chinese) |
| [15] | (苗俊辉, 丁自成, 刘俊, 王利祥, 化学学报, 2021, 79, 545.) |
| [16] | Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. Adv. Mater. 2015, 27, 1170. |
| [17] | Zhang, L. L.; Zhu, X. W.; Deng, D.; Wang, Z.; Zhang, Z. Q.; Li, Y.; Zhang, J. Q.; Lv, K.; Liu, L. X.; Zhang, X. N.; Zhou, H. Q.; Ade, H.; Wei, Z. X. Adv. Mater. 2021, 2106316. |
| [18] | Ma, Y. L.; Cai, D. D.; Wan, S.; Yin, P.; Wang, P. S.; Lin, W. Y.; Zheng, Q. D. Natl. Sci. Rev. 2020, 7, 1886. |
| [19] | Wang, P. S.; Ma, Y. L.; Yin, P.; Cai, D. D.; Wan, S.; Zheng, Q. D. Chem. Eng. J. 2021, 418, 129497. |
| [20] | Wan, S.; Ma, Y. L.; Cai, D. D.; Lin, W. Y.; Wang, P. S.; Wang, J. Y.; Zheng, Q. D. Adv. Funct. Mater. 2021, 31, 2010436. |
| [21] | Ma, Y. L.; Cai, D. D.; Wan, S.; Wang, P. S.; Wang, J. Y.; Zheng, Q. D. Angew. Chem.,Int. Ed. 2020, 59, 21627. |
| [22] | Tang, C. Q.; Ma, X. L.; Wang, J. Y.; Zhang, X.; Liao, R. C.; Ma, Y. L.; Wang, P.; Wang, P. S.; Wang, T.; Zhang, F. J.; Zheng, Q. D. Angew. Chem.,Int. Ed. 2021, 60, 19314. |
| [23] | Ma, Y. L.; Zhang, M.; Wan, S.; Yin, P.; Wang, P. S.; Cai, D. D.; Liu, F., Zheng, Q. D. Joule 2021, 5, 197. |
| [24] | Zhao, C. B.; Wang, Z. L.; Zhou, K.; Ge, H. G.; Zhang, Q.; Jin, L. X.; Wang, W. L.; Yin, S. W. Acta Chim. Sinica 2016, 74, 251. (in Chinese) |
| [24] | (赵蔡斌, 王占领, 周科, 葛红光, 张强, 靳玲侠, 王文亮, 尹世伟, 化学学报. 2016, 74, 251.) |
| [25] | Chao, P. J.; Chen, H.; Zhu, Y. L.; Lai, H. J.; Mo, D. Z.; Zheng, N.; Chang, X. Y.; Meng, H.; He, F. Adv. Mater. 2020, 32, 1907059. |
| [26] | Hu, X. M; Zhong, C. X.; Li, X. Y.; Jia, X.; Wei, Y.; Xie, L. H. Acta Chim. Sinica 2021, 79, 953. (in Chinese) |
| [26] | (胡鑫明, 钟春晓, 李晓艳, 贾雄, 魏颖, 解令海, 化学学报, 2021, 79, 953.) |
| [27] | Bai, Y.; Xue, L. W.; Wang, H. Q.; Zhang, Z. G. Acta Chim. Sinica 2021, 79, 820. (in Chinese) |
| [27] | (白阳, 薛灵伟, 王海侨, 张志国, 化学学报, 2021, 79, 820.) |
| [28] | Wang, T.; Sun, R.; Wang, W.; Li, H. N.; Wu, Y.; Min, J. Chem. Mater. 2021, 33, 761. |
| [29] | Fan, B. B.; Lin, F.; Oh, J. Y.; Fu, H. T.; Gao, W.; Fan, Q. P.; Zhu, Z. L.; Li, W. J.; Li, N.; Ying, L.; Huang, F.; Yang, C. D.; Jen, A. K. Y. Adv. Energy Mater. 2021, 11, 2101768. |
| [30] | Huang, B.; Cheng, Y. J.; Jin, H.; Liu, J. B.; Huang, X. X.; Cui, Y. J.; Liao, X. F.; Yang, C. D.; Ma, Z. F.; Chen, L. Small 2021, 17, 2104451. |
| [31] | Yi, N.; Ai, Q. Y.; Zhou, W. H.; Huang, L. Q.; Zhang, L. F.; Xing, Z.; Li, X. Y.; Zeng, J. R.; Chen, Y. W. Chem. Mater. 2019, 31, 10211. |
| [32] | Zhou, Y. Y.; Li, M.; Lu, H.; Jin, H.; Wang, X. D.; Zhang, Y.; Shen, S. S.; Ma, Z. F.; Song, J. S.; Bo, Z. S. Adv. Funct. Mater. 2021, 31, 2101742. |
| [33] | Xu, X. P.; Bi, Z. Z.; Ma, W.; Wang, Z. S.; Choy, W. C. H.; Wu, W. L.; Zhang, G. J.; Li, Y.; Peng, Q. Adv. Mater. 2017, 29. 1704271. |
| [34] | Song, X.; Hou, L. C.; Guo, R. J.; Wei, Q.; Yang, L. Q.; Jiang, X. Y.; Tu, S.; Zhang, A.; Kan, Z. P.; Tang, W. H.; Xing, G. C.; Muller-Buschbaum, P. ACS Appl. Mater. Interfaces 2021, 13, 2961. |
| [35] | Liu, S. Q.; Chen, D.; Zhou, W. H.; Yu, Z. K. N.; Chen, L.; Liu, F.; Chen, Y. W, Macromolecules 2019, 52, 4359. |
| [36] | Jiang, H. L.; Shi, J. M.; Zhang, L.; Xiao, X. Y.; Zhou, W. H. J. Polym. Res. 2021, 28, 318. |
| [37] | Ma, R.; Zeng, M.; Li, Y. X.; Liu, T.; Luo, Z. H.; Xu, Y.; Li, P.; Zheng, N.; Li, J. F.; Li, Y.; Chen, R. F.; Hou, J. H.; Huang, F.; Yan, H. Adv. Energy Mater. 2021, 11, 2100492. |
| [38] | Cai, Y. H.; Li, Y.; Wang, R.; Wu, H. B.; Chen, Z. H.; Zhang, J.; Ma, Z. F.; Hao, X. T.; Zhao, Y.; Zhang, C. F.; Huang, F.; Sun, Y. M. Adv. Mater. 2021, 33, 2101733. |
| [39] | Rühle, S. Sol. Energy 2016, 130, 139. |
| [40] | Zhou, G. Q.; Zhang, M.; Chen, Z.; Zhang, J. Y.; Zhan, L. L.; Li, S. X.; Zhu, L.; Wang, Z. D.; Zhu, X. Z.; Chen, H. Z.; Wang, L. Y.; Liu, F.; Zhu, H. M. ACS Energy Lett. 2021, 6, 2971. |
| [41] | Wu, Y.; Guo, J.; Wang, W.; Chen, Z. H.; Chen, Z.; Sun, R.; Wu, Q.; Wang, T.; Hao, X. T.; Zhu, H. M.; Min, J. Joule 2021, 5, 1800. |
| [42] | Swick, S. M.; Alzola, J. M.; Sangwan, V. K.; Amsterdam, S. H.; Zhu, W. G.; Jones, L. O.; Powers-Riggs, N.; Facchetti, A.; Kohlstedt, K. L.; Schatz, G. C.; Hersam, M. C.; Wasielewski, M. R.; Marks, T. J. Adv. Energy Mater. 2020, 10, 2000635. |
| [43] | Cowan. S. R.; Roy. A.; Heeger. A. J. Phys. Rev. B. 2010, 82, 245207. |
| [44] | Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M. Appl. Phys. Lett. 2005, 86, 123509. |
| [45] | Qiu, R. H.; Wu, Z. H.; Li, S. H.; Jiang, H. Y.; Wang, Q.; Chen, Y. C.; Liu, X. C.; Zhang, L. J.; Chen, J. W. Sci. China: Chem. 2021, 64, 1208. |
| [46] | Tang, Y. B.; Lin, B. J.; Zhao, H. Z.; Li, T.; Ma, W.; Yan, H. ACS Appl. Mater. Interfaces 2020, 12, 13021. |
| [47] | An, Q. S.; Wang, J. W.; Ma, X. L.; Gao, J. H.; Hu, Z. H.; Liu, B.; Sun, H. L.; Guo, X. G.; Zhang, X. L.; Zhang, F. J. Energy Environ. Sci. 2020, 13, 5039. |
| [48] | Liang, Z. Q.; Li, M. M.; Wang, Q.; Qin, Y. P.; Stuard, S. J.; Peng, Z. X.; Deng, Y. F.; Ade, H.; Ye, L.; Geng, Y. H. Joule 2020, 4, 1278. |
| [49] | Jiang, H. X.; Han, C. Y.; Li, Y. H.; Bi, F. Z.; Zheng, N.; Han, J. H.; Shen, W. F.; Wen, S. G.; Yang, C. M.; Yang, R. Q.; Bao, X. C. Adv. Funct. Mater. 2020, 31, 2007088. |
| [50] | Wu, L. L.; Li, H.; Chai, H. Y.; Xu, Q.; Chen, Y. L.; Chen, L. D. ACS Appl. Electron. Mater. 2021, 3, 1252. |
/
| 〈 |
|
〉 |