肿瘤病理可视化纳米探针的研究进展※
收稿日期: 2021-12-31
网络出版日期: 2022-03-10
基金资助
中国科学院青年创新促进会(2018042); 国家重点研发计划项目(2018YFA0208800); 国家自然科学基金(22177115); 国家自然科学基金(81720108024); 国家自然科学基金(82102679)
Nanoprobes for Visualization of Cancer Pathology in Vivo※
Received date: 2021-12-31
Online published: 2022-03-10
Supported by
Youth Innovation Promotion Association CAS(2018042); National Key Research and Development Program of China(2018YFA0208800); National Natural Science Foundation of China(22177115); National Natural Science Foundation of China(81720108024); National Natural Science Foundation of China(82102679)
癌症的发生和发展伴随着一系列复杂的分子病理学变化, 具有极大的个体差异性. 因此, 实现肿瘤的精准诊断, 尤其是分子病理学的诊断尤为重要. 在临床检测中, 传统影像学检查可以反映肿瘤的位置和解剖学结构, 却难以对其分子病理做出判定; 而病理活检虽然可以获取肿瘤的分子学特征, 但需通过创伤性手段获取样本, 且具有时空局限性. 相比之下, 借助于特异性探针成像的肿瘤分子影像学, 直接以肿瘤病理分子标志物作为成像对比度的来源, 旨在从分子层面对肿瘤进展中的病理学特征进行在体定量化分析, 在肿瘤的精准诊断中具备独特的优势. 近年来, 纳米材料由于优越的理化性质, 已经成为构建高灵敏肿瘤分子影像探针的重要信号载体之一. 基于此, 本综述从基本的纳米靶向探针, 到光、磁学智能响应型纳米探针, 系统总结归纳了基于纳米材料的分子影像技术对肿瘤病理在体可视化的研究进展, 并对未来临床环境中实施该纳米探针技术进行了展望.
张沛森 , 荆莉红 . 肿瘤病理可视化纳米探针的研究进展※[J]. 化学学报, 2022 , 80(6) : 805 -816 . DOI: 10.6023/A21120609
Cancer progression is often accompanied by a series of complicated variations of molecular pathology, varying enormously between individuals. Therefore, it is necessary to achieve precise diagnosis of tumor, especially at the molecular pathology level. In clinical trials, the traditional medical imaging can identify the position and the anatomical structure of tumors, but it is difficult to reveal their molecular pathology. Although the molecular details of tumors can be obtained later through the pathological analysis of biopsies, this approach is invasive and has spatiotemporal limitations. Unlike these strategies, the pathological biomarkers of tumors can be directly imaged in vivo through the probe-based molecular imaging technology, which aims to quantitatively study the real-time tumorous pathological features at a molecular level. This technology holds huge potentials in the clinical application of precise tumor diagnosis. In recent years, nanomaterials that possess superior optical or magnetic physicochemical properties have become one of the important signal carriers for constructing highly sensitive molecular imaging probes. In this review, the development of nanoprobe-based molecular imaging and the in vivo visualization of tumor molecular pathology are summarized. Specifically, the construction of the pathology responsive nanoprobes is highlighted. The current challenges and perspectives on the future steps needed to implement this nanotechnology in a clinical setting are also discussed.
Key words: pathology; tumor; nanoprobe; molecular imaging; visualization
[1] | Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Ca-Cancer J. Clin. 2021, 71, 209. |
[2] | Hanahan, D.; Weinberg, R. A. Cell 2011, 144, 646. |
[3] | Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57. |
[4] | Lawrence, M. S.; Stojanov, P.; Polak, P.; Kryukov, G. V.; Cibulskis, K.; Sivachenko, A.; Carter, S. L.; Stewart, C.; Mermel, C. H.; Roberts, S. A.; Kiezun, A.; Hammerman, P. S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A. H.; Pugh, T. J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortes, M. L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D. I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A. M.; Lohr, J.; Landau, D. A.; Wu, C. J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S. A.; Mora, J.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S. B.; Roberts, C. W. M.; Biegel, J. A.; Stegmaier, K.; Bass, A. J.; Garraway, L. A.; Meyerson, M.; Golub, T. R.; Gordenin, D. A.; Sunyaev, S.; Lander, E. S.; Getz, G. Nature 2013, 499, 214. |
[5] | Meacham, C. E.; Morrison, S. J. Nature 2013, 501, 328. |
[6] | Burrell, R. A.; McGranahan, N.; Bartek, J.; Swanton, C. Nature 2013, 501, 338. |
[7] | Kwee, T. C.; Takahara, T.; Klomp, D. W.; Luijten, P. R. J. Intern. Med. 2010, 268, 120. |
[8] | Garcia-Figueiras, R.; Baleato-Gonzalez, S.; Padhani, A. R.; Luna-Alcala, A.; Vallejo-Casas, J. A.; Sala, E.; Vilanova, J. C.; Koh, D. M.; Herranz-Carnero, M.; Vargas, H. A. Insights Imaging 2019, 10, 28. |
[9] | Tuttle, R.; Kane, J. M. J. Surg. Oncol. 2015, 111, 504. |
[10] | Marusyk, A.; Almendro, V.; Polyak, K. Nat. Rev. Cancer 2012, 12, 323. |
[11] | Sottoriva, A.; Spiteri, I.; Piccirillo, S. G.; Touloumis, A.; Collins, V. P.; Marioni, J. C.; Curtis, C.; Watts, C.; Tavare, S. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4009. |
[12] | Dagogo-Jack, I.; Shaw, A. T. Nat. Rev. Clin. Oncol. 2018, 15, 81. |
[13] | Lopez, A.; Harada, K.; Mizrak Kaya, D.; Dong, X.; Song, S.; Ajani, J. A. Expert Rev. Anticancer Ther. 2018, 18, 19. |
[14] | Weissleder, R. Radiology 1999, 212, 609. |
[15] | Weissleder, R.; Ntziachristos, V. Nat. Med. 2003, 9, 123. |
[16] | Hussain, T.; Nguyen, Q. T. Adv. Drug. Deliv. Rev. 2014, 66, 90. |
[17] | Ma, T.; Zhang, P.; Hou, Y.; Ning, H.; Wang, Z.; Huang, J.; Gao, M. Adv. Healthcare Mater. 2018, 7, e1800391. |
[18] | Yang, Y.; Yue, S.; Qiao, Y.; Zhang, P.; Jiang, N.; Ning, Z.; Liu, C.; Hou, Y. Front. Chem. 2020, 8572471. |
[19] | Jing, L.; Yang, C.; Zhang, P.; Zeng, J.; Li, Z.; Gao, M. View 2020, 1, e19. |
[20] | Zhang, P.; Li, Y.; Tang, W.; Zhao, J.; Jing, L.; McHugh, K. J. Nano Today 2022, 42, 101335. |
[21] | Zhang, P.; Meng, J.; Li, Y.; Yang, C.; Hou, Y.; Tang, W.; McHugh, K. J.; Jing, L. The Innovation 2021, 2, 100174. |
[22] | Ni, D.; Bu, W.; Ehlerding, E. B.; Cai, W.; Shi, J. Chem. Soc. Rev. 2017, 46, 7438. |
[23] | Cao, M.; Dai, X.; Chen, B.; Zhao, N.; Xu, F.-J.. Acta Chim. Sinica 2020, 78, 1054. (in Chinese) |
[23] | (曹萌轩, 代晓光, 陈贝贝, 赵娜娜, 徐福建, 化学学报, 2020, 78, 1054.) |
[24] | Tee, J. K.; Yip, L. X.; Tan, E. S.; Santitewagun, S.; Prasath, A.; Ke, P. C.; Ho, H. K.; Leong, D. T. Chem. Soc. Rev. 2019, 48, 5381. |
[25] | Gao, Z.; Ma, T.; Zhao, E.; Docter, D.; Yang, W.; Stauber, R. H.; Gao, M. Small 2016, 12, 556. |
[26] | Chen, H.; Gu, Z.; An, H.; Chen, C.; Chen, J.; Cui, R.; Chen, S.; Chen, W.; Chen, X.; Chen, X.; Chen, Z.; Ding, B.; Dong, Q.; Fan, Q.; Fu, T.; Hou, D.; Jiang, Q.; Ke, H.; Jiang, X.; Liu, G.; Li, S.; Li, T.; Liu, Z.; Nie, G.; Ovais, M.; Pang, D.; Qiu, N.; Shen, Y.; Tian, H.; Wang, C.; Wang, H.; Wang, Z.; Xu, H.; Xu, J.-F.; Yang, X.; Zhu, S.; Zheng, X.; Zhang, X.; Zhao, Y.; Tan, W.; Zhang, X.; Zhao, Y. Sci. China Chem. 2018, 61, 1503. |
[27] | Park, J. A.; Lee, J. J.; Jung, J. C.; Yu, D. Y.; Oh, C.; Ha, S.; Kim, T. J.; Chang, Y. ChemBioChem 2008, 9, 2811. |
[28] | Port, R. E.; Knopp, M. V.; Brix, G. Magn. Reson. Med. 2001, 45, 1030. |
[29] | Zhang, P.; Wang, Z.; Wang, Y.; Wang, Y.; Liu, C.; Cao, K.; Lu, Y.; Behboodpour, L.; Hou, Y.; Gao, M. J. Mater. Chem. B 2020, 8, 6956. |
[30] | Li, Z.; Wei, L.; Gao, M. Y.; Lei, H. Adv. Mater. 2005, 17, 1001. |
[31] | Hu, F. Q.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. Adv. Mater. 2006, 18, 2553. |
[32] | Liu, C.; Hou, Y.; Gao, M. Adv. Mater. 2014, 26, 6922. |
[33] | Liu, C.; Gao, Z.; Zeng, J.; Hou, Y.; Fang, F.; Li, Y.; Qiao, R.; Shen, L.; Lei, H.; Yang, W.; Gao, M. ACS Nano 2013, 7, 7227. |
[34] | Hou, Y.; Qiao, R.; Fang, F.; Wang, X.; Dong, C.; Liu, K.; Liu, C.; Liu, Z.; Lei, H.; Wang, F.; Gao, M. ACS Nano 2013, 7, 330. |
[35] | Qiao, R.; Liu, C.; Liu, M.; Hu, H.; Liu, C.; Hou, Y.; Wu, K.; Lin, Y.; Liang, J.; Gao, M. ACS Nano 2015, 9, 2120. |
[36] | Qiu, S.; Zeng, J.; Hou, Y.; Chen, L.; Ge, J.; Wen, L.; Liu, C.; Zhang, Y.; Zhu, R.; Gao, M. Nanoscale 2018, 10, 21772. |
[37] | Li, M.; Fang, H.; Liu, Q.; Gai, Y.; Yuan, L.; Wang, S.; Li, H.; Hou, Y.; Gao, M.; Lan, X. Biomater. Sci. 2020, 8, 1802. |
[38] | Liu, C.; Qi, Y.; Qiao, R.; Hou, Y.; Chan, K.; Li, Z.; Huang, J.; Jing, L.; Du, J.; Gao, M. Nanoscale 2016, 8, 12579. |
[39] | Li, Y.; Zhang, P.; Ning, H.; Zeng, J.; Hou, Y.; Jing, L.; Liu, C.; Gao, M. Small 2019, 15, e1905344. |
[40] | McHugh, K. J.; Jing, L.; Severt, S. Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H. S. N.; Perkinson, C. F.; Larusson, F.; Rose, S.; Tomasic, S.; Graf, T.; Tzeng, S. Y.; Sugarman, J. L.; Vlasic, D.; Peters, M.; Peterson, N.; Wood, L.; Tang, W.; Yeom, J.; Collins, J.; Welkhoff, P. A.; Karchin, A.; Tse, M.; Gao, M.; Bawendi, M. G.; Langer, R.; Jaklenec, A. Sci. Transl. Med. 2019, 11, eaay7162. |
[41] | Jiao, M.; Huang, X.; Ma, L.; Li, Y.; Zhang, P.; Wei, X.; Jing, L.; Luo, X.; Rogach, A. L.; Gao, M. Chem. Commun. 2019, 55, 15053. |
[42] | Jing, L.; Ding, K.; Kershaw, S. V.; Kempson, I. M.; Rogach, A. L.; Gao, M. Adv. Mater. 2014, 26, 6367. |
[43] | McHugh, K. J.; Jing, L.; Behrens, A. M.; Jayawardena, S.; Tang, W.; Gao, M.; Langer, R.; Jaklenec, A. Adv. Mater. 2018, 30, e1706356. |
[44] | Jing, L.; Kershaw, S. V.; Li, Y.; Huang, X.; Li, Y.; Rogach, A. L.; Gao, M. Chem. Rev. 2016, 116, 10623. |
[45] | Jing, L.; Ding, K.; Kalytchuk, S.; Wang, Y.; Qiao, R.; Kershaw, S. V.; Rogach, A. L.; Gao, M. J. Phys. Chem. C 2013, 117, 18752. |
[46] | Ding, K.; Jing, L.; Liu, C.; Hou, Y.; Gao, M. Biomaterials 2014, 35, 1608. |
[47] | Li, Q.; Zeng, J.; Miao, Q.; Gao, M. Front. Bioeng. Biotechnol. 2019, 7326. |
[48] | Pan, L.; Huang, Y.; Sheng, K.; Zhang, R.; Fan, Q.; Huang, W. Acta Chim. Sinica 2021, 79, 1097. (in Chinese) |
[48] | (潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维, 化学学报, 2021, 79, 1097.) |
[49] | Liu, H.; Zhu, L.; Lou, X.; Yuan, L.; Zhang, X.-B. Acta Chim. Sinica 2020, 78, 1240. (in Chinese) |
[49] | (刘红文, 朱隆民, 娄霄峰, 袁林, 张晓兵, 化学学报, 2020, 78, 1240.) |
[50] | Liu, S.; Lin, C.; Xu, Y.; Luo, H.; Peng, L.; Zeng, X.; Zheng, H.; Chen, P. R.; Zou, P. Nat. Chem. 2021, 13, 472. |
[51] | Fan, Y.; Liu, L.; Zhang, F. Nano Today 2019, 25, 68. |
[52] | Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; Liu, X.; Zhang, F. Nat. Nanotechnol. 2021, 16, 1011. |
[53] | Dai, H.; Shen, Q.; Shao, J.; Wang, W.; Gao, F.; Dong, X. The Innovation 2021, 2, 100082. |
[54] | Gong, P.; Yang, Y.; Yi, H.; Fang, S.; Zhang, P.; Sheng, Z.; Gao, G.; Gao, D.; Cai, L. Nanoscale 2014, 6, 5416. |
[55] | Zhang, P.; Meng, J.; Li, Y.; Wang, Z.; Hou, Y. Materials 2019, 12, 1632. |
[56] | Xiao, P.; Liu, C.; Ma, T.; Lu, X.; Jing, L.; Hou, Y.; Zhang, P.; Huang, G.; Gao, M. Adv. Sci. 2021, 8, 2004044. |
[57] | Hou, Y.; Zhou, J.; Gao, Z.; Sun, X.; Liu, C.; Shangguan, D.; Yang, W.; Gao, M. ACS Nano 2015, 9, 3199. |
[58] | Ma, T.; Hou, Y.; Zeng, J.; Liu, C.; Zhang, P.; Jing, L.; Shangguan, D.; Gao, M. J. Am. Chem. Soc. 2018, 140, 211. |
[59] | Ling, S.; Yang, X.; Li, C.; Zhang, Y.; Yang, H.; Chen, G.; Wang, Q. Angew. Chem., Int. Ed. 2020, 59, 7219. |
[60] | Zhan, Y.; Ling, S.; Huang, H.; Zhang, Y.; Chen, G.; Huang, S.; Li, C.; Guo, W.; Wang, Q. Angew. Chem., Int. Ed. 2021, 60, 2637. |
[61] | Zhao, X. Principle, Equipment, and Applications of Magnetic Resonance Imaging, Science Press, Beijing, 2000. (in Chinese) |
[61] | (赵喜平, 磁共振成像系统的原理及其应用, 科学出版社, 北京, 2000.) |
[62] | Zu, D.; Gao, J. Magnetic Resonance Imaging-Physical Principles and Methods, Peking University Press, Beijing, 2014. (in Chinese) |
[62] | (俎栋林, 高家红, 核磁共振成像-物理原理和方法, 北京大学出版社, 北京, 2014.) |
[63] | Werner, E. J.; Datta, A.; Jocher, C. J.; Raymond, K. N. Angew. Chem., Int. Ed. 2008, 47, 8568. |
[64] | Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293. |
[65] | Qiao, R.; Yang, C.; Gao, M. J. Mater. Chem. 2009, 19, 6274. |
[66] | Qiao, R.; Jia, Q.; Zeng, J.; Gao, M. Acta Biophys. Sinica 2011, 27, 272. (in Chinese) |
[66] | (乔瑞瑞, 贾巧娟, 曾剑峰, 高明远, 生物物理学报, 2011, 27, 272.) |
[67] | Johnson, N. J. J.; Oakden, W.; Stanisz, G. J.; Scott Prosser, R.; van Veggel, F. C. J. M. Chem. Mater. 2011, 23, 3714. |
[68] | Boros, E.; Gale, E. M.; Caravan, P. Dalton Trans. 2015, 44, 4804. |
[69] | Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. Nat. Nanotechnol. 2016, 11, 724. |
[70] | Zhang, P.; Hou, Y.; Zeng, J.; Li, Y.; Wang, Z.; Zhu, R.; Ma, T.; Gao, M. Angew. Chem., Int. Ed. 2019, 58, 11088. |
[71] | Delongchamps, N. B.; Rouanne, M.; Flam, T.; Beuvon, F.; Liberatore, M.; Zerbib, M.; Cornud, F. BJU Int. 2011, 107, 1411. |
[72] | Turkbey, B.; Mani, H.; Shah, V.; Rastinehad, A. R.; Bernardo, M.; Pohida, T.; Pang, Y.; Daar, D.; Benjamin, C.; McKinney, Y. L.; Trivedi, H.; Chua, C.; Bratslavsky, G.; Shih, J. H.; Linehan, W. M.; Merino, M. J.; Choyke, P. L.; Pinto, P. A. J. Urol. 2011, 186, 1818. |
[73] | Zhou, H.; Tang, J.; Li, J.; Li, W.; Liu, Y.; Chen, C. Nanoscale 2017, 9, 3040. |
[74] | Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. G.; Na, H. B.; Park, J. G.; Ahn, T. Y.; Kim, Y. W.; Moon, W. K.; Choi, S. H.; Hyeon, T. J. Am. Chem. Soc. 2011, 133, 12624. |
[75] | Lu, Y.; Xu, Y. J.; Zhang, G. B.; Ling, D.; Wang, M. Q.; Zhou, Y.; Wu, Y. D.; Wu, T.; Hackett, M. J.; Hyo Kim, B.; Chang, H.; Kim, J.; Hu, X. T.; Dong, L.; Lee, N.; Li, F.; He, J. C.; Zhang, L.; Wen, H. Q.; Yang, B.; Hong Choi, S.; Hyeon, T.; Zou, D. H. Nat. Biomed. Eng. 2017, 1, 637. |
[76] | Zhang, J.; Di, Z.; Yan, H.; Zhao, Y.; Li, L. Nano Lett. 2021, 21, 2793. |
[77] | Gao, Z.; Hou, Y.; Zeng, J.; Chen, L.; Liu, C.; Yang, W.; Gao, M. Adv. Mater. 2017, 29, 1701095. |
[78] | Zhang, P.; Zeng, J.; Li, Y.; Yang, C.; Meng, J.; Hou, Y.; Gao, M. Angew. Chem., Int. Ed. 2021, 60, 8130. |
[79] | Lin, J.; Xin, P.; An, L.; Xu, Y.; Tao, C.; Tian, Q.; Zhou, Z.; Hu, B.; Yang, S. Chem. Commun. 2019, 55, 478. |
[80] | Yuan, Y.; Ding, Z.; Qian, J.; Zhang, J.; Xu, J.; Dong, X.; Han, T.; Ge, S.; Luo, Y.; Wang, Y.; Zhong, K.; Liang, G. Nano Lett. 2016, 16, 2686. |
[81] | Li, F.; Liang, Z.; Liu, J.; Sun, J.; Hu, X.; Zhao, M.; Liu, J.; Bai, R.; Kim, D.; Sun, X.; Hyeon, T.; Ling, D. Nano Lett. 2019, 19, 4213. |
[82] | Santra, S.; Jativa, S. D.; Kaittanis, C.; Normand, G.; Grimm, J.; Perez, J. M. ACS Nano 2012, 6, 7281. |
[83] | Choi, J.-s.; Kim, S.; Yoo, D.; Shin, T.-H.; Kim, H.; Gomes, M. D.; Kim, S. H.; Pines, A.; Cheon, J. Nat. Mater. 2017, 16, 537. |
[84] | Shin, T. H.; Kang, S.; Park, S.; Choi, J. S.; Kim, P. K.; Cheon, J. A. Nat. Protoc. 2018, 13, 2664. |
/
〈 |
|
〉 |