综述

肿瘤病理可视化纳米探针的研究进展

  • 张沛森 ,
  • 荆莉红
展开
  • 中国科学院化学研究所 胶体、界面与化学热力学院重点实验室 北京 100190

张沛森, 北京化工大学研究助理, 于2020年在中科院化学研究所获得博士学位. 主要从事纳米生物材料在恶性肿瘤及心脑血管等重大疾病的分子影像学诊断及联合治疗. 主持国家自然科学基金青年项目1项. 以第一/通讯作者在Angew. Chem. Int. Ed., Adv. Mater., Nano Today, Small, Adv. Health. Mater., J. Mater. Chem. B等国际期刊发表SCI论文14篇, 累计发表SCI论文20多篇. 2019年荣获博士研究生国家奖学金, 中科院化学所青年科学奖特别优秀奖.

荆莉红, 博士, 中国科学院青年创新促进会会员, 2011年于中国科学院化学研究所获得理学博士学位, 同年留所工作至今, 期间先后前往香港城市大学及美国麻省理工学院开展研究工作. 主要研究方向包括: (1)量子点光电功能纳米材料的设计合成及性质; (2)肿瘤等恶性生物学事件相关纳米影像探针的构建; (3)重大传染病相关医疗大数据管理及高通量生物信息分析. 截止目前, 主持国家级项目4项、省部级项目3项, 在Sci. Transl. Med., J. Am. Chem. Soc., Adv. Mater., ACS Nano, Nano Today, Chem. Rev., Biomaterials等重要刊物上发表学术论文50多篇.

庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-31

  网络出版日期: 2022-03-10

基金资助

中国科学院青年创新促进会(2018042); 国家重点研发计划项目(2018YFA0208800); 国家自然科学基金(22177115); 国家自然科学基金(81720108024); 国家自然科学基金(82102679)

Nanoprobes for Visualization of Cancer Pathology in Vivo

  • Peisen Zhang ,
  • Lihong Jing
Expand
  • Department Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
, Tel.: 010-82362540

Received date: 2021-12-31

  Online published: 2022-03-10

Supported by

Youth Innovation Promotion Association CAS(2018042); National Key Research and Development Program of China(2018YFA0208800); National Natural Science Foundation of China(22177115); National Natural Science Foundation of China(81720108024); National Natural Science Foundation of China(82102679)

摘要

癌症的发生和发展伴随着一系列复杂的分子病理学变化, 具有极大的个体差异性. 因此, 实现肿瘤的精准诊断, 尤其是分子病理学的诊断尤为重要. 在临床检测中, 传统影像学检查可以反映肿瘤的位置和解剖学结构, 却难以对其分子病理做出判定; 而病理活检虽然可以获取肿瘤的分子学特征, 但需通过创伤性手段获取样本, 且具有时空局限性. 相比之下, 借助于特异性探针成像的肿瘤分子影像学, 直接以肿瘤病理分子标志物作为成像对比度的来源, 旨在从分子层面对肿瘤进展中的病理学特征进行在体定量化分析, 在肿瘤的精准诊断中具备独特的优势. 近年来, 纳米材料由于优越的理化性质, 已经成为构建高灵敏肿瘤分子影像探针的重要信号载体之一. 基于此, 本综述从基本的纳米靶向探针, 到光、磁学智能响应型纳米探针, 系统总结归纳了基于纳米材料的分子影像技术对肿瘤病理在体可视化的研究进展, 并对未来临床环境中实施该纳米探针技术进行了展望.

本文引用格式

张沛森 , 荆莉红 . 肿瘤病理可视化纳米探针的研究进展[J]. 化学学报, 2022 , 80(6) : 805 -816 . DOI: 10.6023/A21120609

Abstract

Cancer progression is often accompanied by a series of complicated variations of molecular pathology, varying enormously between individuals. Therefore, it is necessary to achieve precise diagnosis of tumor, especially at the molecular pathology level. In clinical trials, the traditional medical imaging can identify the position and the anatomical structure of tumors, but it is difficult to reveal their molecular pathology. Although the molecular details of tumors can be obtained later through the pathological analysis of biopsies, this approach is invasive and has spatiotemporal limitations. Unlike these strategies, the pathological biomarkers of tumors can be directly imaged in vivo through the probe-based molecular imaging technology, which aims to quantitatively study the real-time tumorous pathological features at a molecular level. This technology holds huge potentials in the clinical application of precise tumor diagnosis. In recent years, nanomaterials that possess superior optical or magnetic physicochemical properties have become one of the important signal carriers for constructing highly sensitive molecular imaging probes. In this review, the development of nanoprobe-based molecular imaging and the in vivo visualization of tumor molecular pathology are summarized. Specifically, the construction of the pathology responsive nanoprobes is highlighted. The current challenges and perspectives on the future steps needed to implement this nanotechnology in a clinical setting are also discussed.

参考文献

[1]
Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Ca-Cancer J. Clin. 2021, 71, 209.
[2]
Hanahan, D.; Weinberg, R. A. Cell 2011, 144, 646.
[3]
Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57.
[4]
Lawrence, M. S.; Stojanov, P.; Polak, P.; Kryukov, G. V.; Cibulskis, K.; Sivachenko, A.; Carter, S. L.; Stewart, C.; Mermel, C. H.; Roberts, S. A.; Kiezun, A.; Hammerman, P. S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A. H.; Pugh, T. J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortes, M. L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D. I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A. M.; Lohr, J.; Landau, D. A.; Wu, C. J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S. A.; Mora, J.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S. B.; Roberts, C. W. M.; Biegel, J. A.; Stegmaier, K.; Bass, A. J.; Garraway, L. A.; Meyerson, M.; Golub, T. R.; Gordenin, D. A.; Sunyaev, S.; Lander, E. S.; Getz, G. Nature 2013, 499, 214.
[5]
Meacham, C. E.; Morrison, S. J. Nature 2013, 501, 328.
[6]
Burrell, R. A.; McGranahan, N.; Bartek, J.; Swanton, C. Nature 2013, 501, 338.
[7]
Kwee, T. C.; Takahara, T.; Klomp, D. W.; Luijten, P. R. J. Intern. Med. 2010, 268, 120.
[8]
Garcia-Figueiras, R.; Baleato-Gonzalez, S.; Padhani, A. R.; Luna-Alcala, A.; Vallejo-Casas, J. A.; Sala, E.; Vilanova, J. C.; Koh, D. M.; Herranz-Carnero, M.; Vargas, H. A. Insights Imaging 2019, 10, 28.
[9]
Tuttle, R.; Kane, J. M. J. Surg. Oncol. 2015, 111, 504.
[10]
Marusyk, A.; Almendro, V.; Polyak, K. Nat. Rev. Cancer 2012, 12, 323.
[11]
Sottoriva, A.; Spiteri, I.; Piccirillo, S. G.; Touloumis, A.; Collins, V. P.; Marioni, J. C.; Curtis, C.; Watts, C.; Tavare, S. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4009.
[12]
Dagogo-Jack, I.; Shaw, A. T. Nat. Rev. Clin. Oncol. 2018, 15, 81.
[13]
Lopez, A.; Harada, K.; Mizrak Kaya, D.; Dong, X.; Song, S.; Ajani, J. A. Expert Rev. Anticancer Ther. 2018, 18, 19.
[14]
Weissleder, R. Radiology 1999, 212, 609.
[15]
Weissleder, R.; Ntziachristos, V. Nat. Med. 2003, 9, 123.
[16]
Hussain, T.; Nguyen, Q. T. Adv. Drug. Deliv. Rev. 2014, 66, 90.
[17]
Ma, T.; Zhang, P.; Hou, Y.; Ning, H.; Wang, Z.; Huang, J.; Gao, M. Adv. Healthcare Mater. 2018, 7, e1800391.
[18]
Yang, Y.; Yue, S.; Qiao, Y.; Zhang, P.; Jiang, N.; Ning, Z.; Liu, C.; Hou, Y. Front. Chem. 2020, 8572471.
[19]
Jing, L.; Yang, C.; Zhang, P.; Zeng, J.; Li, Z.; Gao, M. View 2020, 1, e19.
[20]
Zhang, P.; Li, Y.; Tang, W.; Zhao, J.; Jing, L.; McHugh, K. J. Nano Today 2022, 42, 101335.
[21]
Zhang, P.; Meng, J.; Li, Y.; Yang, C.; Hou, Y.; Tang, W.; McHugh, K. J.; Jing, L. The Innovation 2021, 2, 100174.
[22]
Ni, D.; Bu, W.; Ehlerding, E. B.; Cai, W.; Shi, J. Chem. Soc. Rev. 2017, 46, 7438.
[23]
Cao, M.; Dai, X.; Chen, B.; Zhao, N.; Xu, F.-J.. Acta Chim. Sinica 2020, 78, 1054. (in Chinese)
[23]
(曹萌轩, 代晓光, 陈贝贝, 赵娜娜, 徐福建, 化学学报, 2020, 78, 1054.)
[24]
Tee, J. K.; Yip, L. X.; Tan, E. S.; Santitewagun, S.; Prasath, A.; Ke, P. C.; Ho, H. K.; Leong, D. T. Chem. Soc. Rev. 2019, 48, 5381.
[25]
Gao, Z.; Ma, T.; Zhao, E.; Docter, D.; Yang, W.; Stauber, R. H.; Gao, M. Small 2016, 12, 556.
[26]
Chen, H.; Gu, Z.; An, H.; Chen, C.; Chen, J.; Cui, R.; Chen, S.; Chen, W.; Chen, X.; Chen, X.; Chen, Z.; Ding, B.; Dong, Q.; Fan, Q.; Fu, T.; Hou, D.; Jiang, Q.; Ke, H.; Jiang, X.; Liu, G.; Li, S.; Li, T.; Liu, Z.; Nie, G.; Ovais, M.; Pang, D.; Qiu, N.; Shen, Y.; Tian, H.; Wang, C.; Wang, H.; Wang, Z.; Xu, H.; Xu, J.-F.; Yang, X.; Zhu, S.; Zheng, X.; Zhang, X.; Zhao, Y.; Tan, W.; Zhang, X.; Zhao, Y. Sci. China Chem. 2018, 61, 1503.
[27]
Park, J. A.; Lee, J. J.; Jung, J. C.; Yu, D. Y.; Oh, C.; Ha, S.; Kim, T. J.; Chang, Y. ChemBioChem 2008, 9, 2811.
[28]
Port, R. E.; Knopp, M. V.; Brix, G. Magn. Reson. Med. 2001, 45, 1030.
[29]
Zhang, P.; Wang, Z.; Wang, Y.; Wang, Y.; Liu, C.; Cao, K.; Lu, Y.; Behboodpour, L.; Hou, Y.; Gao, M. J. Mater. Chem. B 2020, 8, 6956.
[30]
Li, Z.; Wei, L.; Gao, M. Y.; Lei, H. Adv. Mater. 2005, 17, 1001.
[31]
Hu, F. Q.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. Adv. Mater. 2006, 18, 2553.
[32]
Liu, C.; Hou, Y.; Gao, M. Adv. Mater. 2014, 26, 6922.
[33]
Liu, C.; Gao, Z.; Zeng, J.; Hou, Y.; Fang, F.; Li, Y.; Qiao, R.; Shen, L.; Lei, H.; Yang, W.; Gao, M. ACS Nano 2013, 7, 7227.
[34]
Hou, Y.; Qiao, R.; Fang, F.; Wang, X.; Dong, C.; Liu, K.; Liu, C.; Liu, Z.; Lei, H.; Wang, F.; Gao, M. ACS Nano 2013, 7, 330.
[35]
Qiao, R.; Liu, C.; Liu, M.; Hu, H.; Liu, C.; Hou, Y.; Wu, K.; Lin, Y.; Liang, J.; Gao, M. ACS Nano 2015, 9, 2120.
[36]
Qiu, S.; Zeng, J.; Hou, Y.; Chen, L.; Ge, J.; Wen, L.; Liu, C.; Zhang, Y.; Zhu, R.; Gao, M. Nanoscale 2018, 10, 21772.
[37]
Li, M.; Fang, H.; Liu, Q.; Gai, Y.; Yuan, L.; Wang, S.; Li, H.; Hou, Y.; Gao, M.; Lan, X. Biomater. Sci. 2020, 8, 1802.
[38]
Liu, C.; Qi, Y.; Qiao, R.; Hou, Y.; Chan, K.; Li, Z.; Huang, J.; Jing, L.; Du, J.; Gao, M. Nanoscale 2016, 8, 12579.
[39]
Li, Y.; Zhang, P.; Ning, H.; Zeng, J.; Hou, Y.; Jing, L.; Liu, C.; Gao, M. Small 2019, 15, e1905344.
[40]
McHugh, K. J.; Jing, L.; Severt, S. Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H. S. N.; Perkinson, C. F.; Larusson, F.; Rose, S.; Tomasic, S.; Graf, T.; Tzeng, S. Y.; Sugarman, J. L.; Vlasic, D.; Peters, M.; Peterson, N.; Wood, L.; Tang, W.; Yeom, J.; Collins, J.; Welkhoff, P. A.; Karchin, A.; Tse, M.; Gao, M.; Bawendi, M. G.; Langer, R.; Jaklenec, A. Sci. Transl. Med. 2019, 11, eaay7162.
[41]
Jiao, M.; Huang, X.; Ma, L.; Li, Y.; Zhang, P.; Wei, X.; Jing, L.; Luo, X.; Rogach, A. L.; Gao, M. Chem. Commun. 2019, 55, 15053.
[42]
Jing, L.; Ding, K.; Kershaw, S. V.; Kempson, I. M.; Rogach, A. L.; Gao, M. Adv. Mater. 2014, 26, 6367.
[43]
McHugh, K. J.; Jing, L.; Behrens, A. M.; Jayawardena, S.; Tang, W.; Gao, M.; Langer, R.; Jaklenec, A. Adv. Mater. 2018, 30, e1706356.
[44]
Jing, L.; Kershaw, S. V.; Li, Y.; Huang, X.; Li, Y.; Rogach, A. L.; Gao, M. Chem. Rev. 2016, 116, 10623.
[45]
Jing, L.; Ding, K.; Kalytchuk, S.; Wang, Y.; Qiao, R.; Kershaw, S. V.; Rogach, A. L.; Gao, M. J. Phys. Chem. C 2013, 117, 18752.
[46]
Ding, K.; Jing, L.; Liu, C.; Hou, Y.; Gao, M. Biomaterials 2014, 35, 1608.
[47]
Li, Q.; Zeng, J.; Miao, Q.; Gao, M. Front. Bioeng. Biotechnol. 2019, 7326.
[48]
Pan, L.; Huang, Y.; Sheng, K.; Zhang, R.; Fan, Q.; Huang, W. Acta Chim. Sinica 2021, 79, 1097. (in Chinese)
[48]
(潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维, 化学学报, 2021, 79, 1097.)
[49]
Liu, H.; Zhu, L.; Lou, X.; Yuan, L.; Zhang, X.-B. Acta Chim. Sinica 2020, 78, 1240. (in Chinese)
[49]
(刘红文, 朱隆民, 娄霄峰, 袁林, 张晓兵, 化学学报, 2020, 78, 1240.)
[50]
Liu, S.; Lin, C.; Xu, Y.; Luo, H.; Peng, L.; Zeng, X.; Zheng, H.; Chen, P. R.; Zou, P. Nat. Chem. 2021, 13, 472.
[51]
Fan, Y.; Liu, L.; Zhang, F. Nano Today 2019, 25, 68.
[52]
Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; Liu, X.; Zhang, F. Nat. Nanotechnol. 2021, 16, 1011.
[53]
Dai, H.; Shen, Q.; Shao, J.; Wang, W.; Gao, F.; Dong, X. The Innovation 2021, 2, 100082.
[54]
Gong, P.; Yang, Y.; Yi, H.; Fang, S.; Zhang, P.; Sheng, Z.; Gao, G.; Gao, D.; Cai, L. Nanoscale 2014, 6, 5416.
[55]
Zhang, P.; Meng, J.; Li, Y.; Wang, Z.; Hou, Y. Materials 2019, 12, 1632.
[56]
Xiao, P.; Liu, C.; Ma, T.; Lu, X.; Jing, L.; Hou, Y.; Zhang, P.; Huang, G.; Gao, M. Adv. Sci. 2021, 8, 2004044.
[57]
Hou, Y.; Zhou, J.; Gao, Z.; Sun, X.; Liu, C.; Shangguan, D.; Yang, W.; Gao, M. ACS Nano 2015, 9, 3199.
[58]
Ma, T.; Hou, Y.; Zeng, J.; Liu, C.; Zhang, P.; Jing, L.; Shangguan, D.; Gao, M. J. Am. Chem. Soc. 2018, 140, 211.
[59]
Ling, S.; Yang, X.; Li, C.; Zhang, Y.; Yang, H.; Chen, G.; Wang, Q. Angew. Chem., Int. Ed. 2020, 59, 7219.
[60]
Zhan, Y.; Ling, S.; Huang, H.; Zhang, Y.; Chen, G.; Huang, S.; Li, C.; Guo, W.; Wang, Q. Angew. Chem., Int. Ed. 2021, 60, 2637.
[61]
Zhao, X. Principle, Equipment, and Applications of Magnetic Resonance Imaging, Science Press, Beijing, 2000. (in Chinese)
[61]
(赵喜平, 磁共振成像系统的原理及其应用, 科学出版社, 北京, 2000.)
[62]
Zu, D.; Gao, J. Magnetic Resonance Imaging-Physical Principles and Methods, Peking University Press, Beijing, 2014. (in Chinese)
[62]
(俎栋林, 高家红, 核磁共振成像-物理原理和方法, 北京大学出版社, 北京, 2014.)
[63]
Werner, E. J.; Datta, A.; Jocher, C. J.; Raymond, K. N. Angew. Chem., Int. Ed. 2008, 47, 8568.
[64]
Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293.
[65]
Qiao, R.; Yang, C.; Gao, M. J. Mater. Chem. 2009, 19, 6274.
[66]
Qiao, R.; Jia, Q.; Zeng, J.; Gao, M. Acta Biophys. Sinica 2011, 27, 272. (in Chinese)
[66]
(乔瑞瑞, 贾巧娟, 曾剑峰, 高明远, 生物物理学报, 2011, 27, 272.)
[67]
Johnson, N. J. J.; Oakden, W.; Stanisz, G. J.; Scott Prosser, R.; van Veggel, F. C. J. M. Chem. Mater. 2011, 23, 3714.
[68]
Boros, E.; Gale, E. M.; Caravan, P. Dalton Trans. 2015, 44, 4804.
[69]
Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. Nat. Nanotechnol. 2016, 11, 724.
[70]
Zhang, P.; Hou, Y.; Zeng, J.; Li, Y.; Wang, Z.; Zhu, R.; Ma, T.; Gao, M. Angew. Chem., Int. Ed. 2019, 58, 11088.
[71]
Delongchamps, N. B.; Rouanne, M.; Flam, T.; Beuvon, F.; Liberatore, M.; Zerbib, M.; Cornud, F. BJU Int. 2011, 107, 1411.
[72]
Turkbey, B.; Mani, H.; Shah, V.; Rastinehad, A. R.; Bernardo, M.; Pohida, T.; Pang, Y.; Daar, D.; Benjamin, C.; McKinney, Y. L.; Trivedi, H.; Chua, C.; Bratslavsky, G.; Shih, J. H.; Linehan, W. M.; Merino, M. J.; Choyke, P. L.; Pinto, P. A. J. Urol. 2011, 186, 1818.
[73]
Zhou, H.; Tang, J.; Li, J.; Li, W.; Liu, Y.; Chen, C. Nanoscale 2017, 9, 3040.
[74]
Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. G.; Na, H. B.; Park, J. G.; Ahn, T. Y.; Kim, Y. W.; Moon, W. K.; Choi, S. H.; Hyeon, T. J. Am. Chem. Soc. 2011, 133, 12624.
[75]
Lu, Y.; Xu, Y. J.; Zhang, G. B.; Ling, D.; Wang, M. Q.; Zhou, Y.; Wu, Y. D.; Wu, T.; Hackett, M. J.; Hyo Kim, B.; Chang, H.; Kim, J.; Hu, X. T.; Dong, L.; Lee, N.; Li, F.; He, J. C.; Zhang, L.; Wen, H. Q.; Yang, B.; Hong Choi, S.; Hyeon, T.; Zou, D. H. Nat. Biomed. Eng. 2017, 1, 637.
[76]
Zhang, J.; Di, Z.; Yan, H.; Zhao, Y.; Li, L. Nano Lett. 2021, 21, 2793.
[77]
Gao, Z.; Hou, Y.; Zeng, J.; Chen, L.; Liu, C.; Yang, W.; Gao, M. Adv. Mater. 2017, 29, 1701095.
[78]
Zhang, P.; Zeng, J.; Li, Y.; Yang, C.; Meng, J.; Hou, Y.; Gao, M. Angew. Chem., Int. Ed. 2021, 60, 8130.
[79]
Lin, J.; Xin, P.; An, L.; Xu, Y.; Tao, C.; Tian, Q.; Zhou, Z.; Hu, B.; Yang, S. Chem. Commun. 2019, 55, 478.
[80]
Yuan, Y.; Ding, Z.; Qian, J.; Zhang, J.; Xu, J.; Dong, X.; Han, T.; Ge, S.; Luo, Y.; Wang, Y.; Zhong, K.; Liang, G. Nano Lett. 2016, 16, 2686.
[81]
Li, F.; Liang, Z.; Liu, J.; Sun, J.; Hu, X.; Zhao, M.; Liu, J.; Bai, R.; Kim, D.; Sun, X.; Hyeon, T.; Ling, D. Nano Lett. 2019, 19, 4213.
[82]
Santra, S.; Jativa, S. D.; Kaittanis, C.; Normand, G.; Grimm, J.; Perez, J. M. ACS Nano 2012, 6, 7281.
[83]
Choi, J.-s.; Kim, S.; Yoo, D.; Shin, T.-H.; Kim, H.; Gomes, M. D.; Kim, S. H.; Pines, A.; Cheon, J. Nat. Mater. 2017, 16, 537.
[84]
Shin, T. H.; Kang, S.; Park, S.; Choi, J. S.; Kim, P. K.; Cheon, J. A. Nat. Protoc. 2018, 13, 2664.
文章导航

/