基于cypate光裂解的新型近红外光响应稀土上转换纳米载药系统※
收稿日期: 2022-01-01
网络出版日期: 2022-03-15
基金资助
国家自然科学基金(12174392); 国家自然科学基金(22175179); 国家自然科学基金(22135008); 福建省自然科学基金(2021I0040); 福建省自然科学基金(2021L3024); 福建省自然科学基金(2021Y0067)
A Novel Near-infrared Responsive Lanthanide Upconversion Nanoplatform for Drug Delivery Based on Photocleavage of Cypate※
Received date: 2022-01-01
Online published: 2022-03-15
Supported by
National Natural Science Foundation of China(12174392); National Natural Science Foundation of China(22175179); National Natural Science Foundation of China(22135008); Natural Science Foundation of Fujian Province(2021I0040); Natural Science Foundation of Fujian Province(2021L3024); Natural Science Foundation of Fujian Province(2021Y0067)
光响应药物释放体系具有非侵入性、远程可控且时空分辨率高等特点, 在杀菌、抗癌等生物医学领域具有重要应用价值. 但目前近红外光响应的光裂解药物递送体系报道较少且光响应效率还有待提高. 本工作将稀土纳米颗粒包覆介孔二氧化硅, 逐步偶联近红外染料cypate、金刚烷胺和β-环糊精来封堵孔口, 利用cypate的自敏光氧化断键作为光响应开关, 成功构建了一种新型近红外光响应稀土上转换纳米载药系统. 该纳米载药系统负载抗生素氧氟沙星表现出极低的药物流失率和较高的808 nm光照释放效率, 并且通过控制光照时间可以满足不同的给药量需求. 体外抗菌实验结果进一步验证了该纳米载药系统的光响应药物释放性能. 此外, 该纳米载药系统在980 nm激光激发下的上转换发光较强且不影响药物释放, 可以实现纳米载药系统的药物定位和生物成像功能. 本研究为发展高效光响应载药体系提供了新的思路.
刘若湄 , 冯艳辉 , 李卓 , 卢珊 , 关天用 , 李幸俊 , 刘? , 陈卓 , 陈学元 . 基于cypate光裂解的新型近红外光响应稀土上转换纳米载药系统※[J]. 化学学报, 2022 , 80(4) : 423 -427 . DOI: 10.6023/A22010001
Light-responsive drug delivery systems (DDS) exhibit the advantages of non-invasive, high controllability and spatio-temporal precision. However, DDS triggered by near-infrared (NIR) light are few and inefficient. In this work, we designed a novel NIR-responsive upconversion nanoplatform for drug delivery. In this nanoplatform, core-shell upconversion nanoparticle (UCNP) NaYF4:Yb,Er@NaYF4 was coated by mesoporous silica, and then successively coupled with NIR dye cypate, amantadine (AD) and β-cyclodextrin (β-CD) to block the pores and entrap the drugs. The cypate molecules with the feature of auto-sensitized photooxidation under 808 nm irradiation were, for the first time, employed as light-responsive moieties in DDS. The obtained nanoplatform was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption/desorption, dynamic light scattering (DLS) and zeta potential analysis. Mechanism of photocleavage of cypate by singlet oxygen (1O2) was also investigated by electron spin resonance (ESR) measurement. The nanoplatform loaded with antibiotic ofloxacin (OFL) showed a low drug leakage (6.9%) in the dark condition and a rapid release (50.9%) upon 808 nm irradiation with a relatively low power density of 0.5 W•cm-2 for 40 min. Moreover, on-demand release of OFL can be achieved by adjusting the irradiation time (0~40 min). In vitro antibacterial experiments showed that the nanoplatform had a much better antibacterial effect against Staphylococcus aureus after 808 nm irradiation as compared with the group without irradiation. These results further verified the excellent NIR-responsive performance for the designed nanoplatform. In addition, the nanoplatform exhibited strong and stable upconversion luminescence (UCL) under 980 nm excitation, which can be applied for DDS tracing and bioimaging. The cytocompatibility of the nanoplatform was evaluated by methyl thiazolyl tetrazolium (MTT) assay, showing that the nanoplatform had no cytotoxic effect on human embryonic liver cell line (LO2) and exhibited great potentials in versatile bioapplications. Our work may open up a new avenue for the exploration of multi-functional NIR-responsive DDS.
[1] | Lakkadwala, S.; Dos Santos Rodrigues, B.; Sun, C.; Singh, J. J. Control. Release 2019, 307, 247. |
[2] | Lu, S.; Tu, D.; Li, X.; Li, R.; Chen, X. Nano Res. 2015, 9, 187. |
[3] | Luther, D. C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y. W.; Nagaraj, H.; Rotello, V. M. Adv. Drug Deliv. Rev. 2020, 156, 188. |
[4] | Wang, Q.; Jiang, H.; Li, Y.; Chen, W.; Li, H.; Peng, K.; Zhang, Z.; Sun, X. Biomaterials 2017, 122, 10. |
[5] | Yadav, S.; van Vlerken, L. E.; Little, S. R.; Amiji, M. M. Cancer Chemother. Pharmacol. 2009, 63, 711. |
[6] | Zhang, M.; Song, R.; Liu, Y.; Yi, Z.; Meng, X.; Zhang, J.; Tang, Z.; Yao, Z.; Liu, Y.; Liu, X.; Bu, W. Chem 2019, 5, 2171. |
[7] | Cai, Z.; Zhang, Y.; Jiang, L.; Zhu, J. Acta Chim. Sinica 2021, 79, 481. (in Chinese) |
[7] | (蔡政, 张颖雯, 姜立萍, 朱俊杰, 化学学报, 2021, 79, 481.) |
[8] | Han, X.; Zhang, L.; Zhang, Q.; Sui, X.; Qian, M.; Chen, Q.; Wang, J. Acta Chim. Sinica 2021, 79. 794.. (in Chinese) |
[8] | (韩旭, 张留伟, 张强, 睢晞航, 钱明, 陈麒先, 王静云, 化学学报, 2021, 79, 794.) |
[9] | Liu, G.; Liu, W.; Dong, C. Polym. Chem. 2013, 4, 3431. |
[10] | Shi, B.; Ren, N.; Gu, L.; Xu, G.; Wang, R.; Zhu, T.; Zhu, Y.; Fan, C.; Zhao, C.; Tian, H. Angew. Chem. Int. Ed. 2019, 58, 16826. |
[11] | Li, Z.; Lu, S.; Liu, W.; Dai, T.; Ke, J.; Li, X.; Li, R.; Zhang, Y.; Chen, Z.; Chen, X. Angew. Chem. Int. Ed. 2021, 60, 19201. |
[12] | Huang, J.; Li, Z.; Liu, Z. Acta Chim. Sinica 2021, 79, 1049. (in Chinese) |
[12] | (黄菊, 李贞, 刘志洪, 化学学报, 2021, 79, 1049.) |
[13] | Xu, J.; Shi, R.; Chen, G.; Dong, S.; Yang, P.; Zhang, Z.; Niu, N.; Gai, S.; He, F.; Fu, Y.; Lin, J. ACS Nano 2020, 14, 9613. |
[14] | Xu, J.; Zhou, J.; Chen, Y.; Yang, P.; Lin, J. Coord. Chem. Rev. 2020, 415, 213328. |
[15] | Zheng, W.; Huang, P.; Tu, D.; Ma, E.; Zhu, H.; Chen, X. Chem. Soc. Rev. 2015, 44, 1379. |
[16] | Cui, L.; Zhang, F.; Wang, Q.; Lin, H.; Yang, C.; Zhang, T.; Tong, R.; An, N.; Qu, F. J. Mater. Chem. B 2015, 3, 7046. |
[17] | Liu, J.; Bu, W.; Pan, L.; Shi, J. Angew. Chem. Int. Ed. 2013, 52, 4375. |
[18] | Yan, B.; Boyer, J. C.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc. 2011, 133, 19714. |
[19] | Yan, B.; Boyer, J. C.; Habault, D.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc. 2012, 134, 16558. |
[20] | Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Adv. Mater. 2016, 28, 9341. |
[21] | Zhao, L.; Peng, J.; Huang, Q.; Li, C.; Chen, M.; Sun, Y.; Lin, Q.; Zhu, L.; Li, F. Adv. Funct. Mater. 2014, 24, 363. |
[22] | Bao, G.; Wen, S.; Lin, G.; Yuan, J.; Lin, J.; Wong, K.-L.; Bünzli, J.-C. G.; Jin, D. Coord. Chem. Rev. 2021, 429, 213642. |
[23] | Chen, D.; Zhang, G.; Li, R.; Guan, M.; Wang, X.; Zou, T.; Zhang, Y.; Wang, C.; Shu, C.; Hong, H.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 7373. |
[24] | Wang, H.; Han, R. L.; Yang, L. M.; Shi, J. H.; Liu, Z. J.; Hu, Y.; Wang, Y.; Liu, S. J.; Gan, Y. ACS Appl. Mater. Interfaces 2016, 8, 4416. |
[25] | Wang, X.; Meng, G.; Zhang, S.; Liu, X. Sci. Rep. 2016, 6, 29911. |
[26] | Yang, G.; Sun, X.; Liu, J.; Feng, L.; Liu, Z. Adv. Funct. Mater. 2016, 26, 4722. |
[27] | Zhang, T.; Lin, H.; Cui, L.; An, N.; Tong, R.; Chen, Y.; Yang, C.; Li, X.; Liu, J.; Qu, F. Eur. J. Inorg. Chem. 2016, 2016, 1206. |
[28] | Li, N.; Chen, Y.; Zhang, Y. M.; Yang, Y.; Su, Y.; Chen, J. T.; Liu, Y. Sci. Rep. 2014, 4, 4164. |
[29] | Cuggino, J. C.; Contreras, C. B.; Jimenez-Kairuz, A.; Maletto, B. A.; Alvarez Igarzabal, C. I. Mol. Pharm. 2014, 11, 2239. |
[30] | Li, J.; Li, S.; He, Z. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 999. |
[31] | Sezer, A. D.; Akbuga, J. Pharm. Dev. Technol. 2012, 17, 118. |
[32] | Xie, J.; Wang, C.; Ning, Q.; Gao, Q.; Gao, C.; Gou, Z.; Ye, J. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 2173. |
[33] | You, W.; Tu, D.; Zheng, W.; Shang, X.; Song, X.; Zhou, S.; Liu, Y.; Li, R.; Chen, X. Nanoscale 2018, 10, 11477. |
[34] | Li, C.; Liu, J.; Alonso, S.; Li, F.; Zhang, Y. Nanoscale 2012, 4, 6065. |
[35] | Zhang, Y. M.; Liu, Y. H.; Liu, Y. Adv. Mater. 2020, 32, e1806158. |
[36] | James, N. S.; Cheruku, R. R.; Missert, J. R.; Sunar, U.; Pandey, R. K. Molecules 2018, 23, 1842. |
/
〈 |
|
〉 |