基于抑制扭转的分子内电荷转移(TICT)提升有机小分子荧光染料亮度及光稳定性※
收稿日期: 2021-12-23
网络出版日期: 2022-03-15
基金资助
国家自然科学基金(22078314); 国家自然科学基金(21878286); 国家自然科学基金(21908216); 大连化学物理研究所(DICPI202142); 大连化学物理研究所(DICPI201938); 大连化学物理研究所(DICPZZBS201805); 新加坡教育部(MOE-MOET2EP10120-0007); 新加坡科技设计大学(SUTD-ZJU(SUTD-ZJU (VP) 201905)
Enhancing Brightness and Photostability of Organic Small Molecular Fluorescent Dyes Through Inhibiting Twisted Intramolecular Charge Transfer (TICT)※
Received date: 2021-12-23
Online published: 2022-03-15
Supported by
National Natural Science Foundation of China(22078314); National Natural Science Foundation of China(21878286); National Natural Science Foundation of China(21908216); Dalian Institute of Chemical Physics(DICPI202142); Dalian Institute of Chemical Physics(DICPI201938); Dalian Institute of Chemical Physics(DICPZZBS201805); The authors thank the support from the Ministry of Education, Singapore(MOE-MOET2EP10120-0007); Singapore University of Technology and Design(SUTD-ZJU (VP) 201905)
有机小分子荧光染料研究已有170余年历史, 其结构和性能随着合成方法和应用需求的发展而不断革新, 已被广泛应用于荧光标记、探针和生物成像中. 近年来发展起来的超分辨荧光成像技术对有机小分子荧光染料的亮度、稳定性和开关性能等均提出了更高的要求, 这为染料发展带来了新的机遇. 当前, 化学工作者也将更多精力聚焦在染料结构改造提升有机小分子荧光染料的亮度与光稳定性. 激发态扭转的分子内电荷转移(TICT)是有机小分子荧光染料中主要的非辐射衰减途径之一. 因而, 抑制TICT能够很好地提升染料的亮度和光稳定性, 并成为目前针对超分辨成像技术发展高亮度和光稳定性的有机小分子荧光染料的主要方法. 本综述首先简要回顾了TICT的机制和发展过程, 而后重点介绍近些年通过抑制TICT策略来提升不同结构有机小分子荧光染料光谱性能方面的进展.
关键词: 超分辨成像; 有机小分子荧光染料; 扭曲的分子内电荷转移; 亮度; 光稳定性
许宁 , 乔庆龙 , 刘晓刚 , 徐兆超 . 基于抑制扭转的分子内电荷转移(TICT)提升有机小分子荧光染料亮度及光稳定性※[J]. 化学学报, 2022 , 80(4) : 553 -562 . DOI: 10.6023/A21120578
During the past 170 years, organic small molecular fluorescent dyes had been widely applied in fluorescence labeling, fluorescence probes and bioimaging. And their structures and performances continually evolved with development of synthetic method and application. However, the emerging super-resolution imaging put forward higher requirements at brightness, stability and switching performance of organic small molecular fluorescent dyes, which also offers new opportunity for developing novel dyes at the same time. So, chemists presently pay more attentions on brightness and photostability. Twisted intramolecular charge transfer (TICT), the major nonradiative decay channel in organic small molecular fluorescent dyes, seriously decrease brightness and photostability. Therefore, inhibiting TICT has became the crucial strategy to develop organic small molecular fluorescent dyes towards super-resolution imaging. This review will firstly demonstrate mechanism and development of TICT and emphatically introduce the progress in improving organic small molecular fluorescent dyes based on inhibiting TICT.
[1] | Planchon, T. A.; Gao, L.; Milkie, D. E.; Davidson, M. W.; Galbraith, J. A.; Galbraith, C. G.; Betzig, E. Nat. Methods 2011, 8, 417. |
[2] | Hell, S. W. Angew. Chem., Int. Ed. 2015, 54, 8054. |
[3] | Huang, B.; Babcock, H.; Zhuang, X.-W. Cell 2010, 143, 1047. |
[4] | Jones, S. A.; Shim, S.-H.; He, J.; Zhuang, X.-W. Nat. Methods 2011, 8, 499. |
[5] | Balzarotti, F.; Eilers, Y.; Gwosch, K. C.; Gynna, A. H.; Westphal, V.; Stefani, F. D.; Elf, J.; Hell, S. W. Science 2017, 355, 606. |
[6] | Baddeley, D.; Bewersdorf, J. Annu. Rev. Biochem. 2018, 87, 965. |
[7] | Yu, J. Annu. Rev. Phys. Chem. 2016, 67, 565. |
[8] | Sydor, A. M.; Czymmek, K. J.; Puchner, E. M.; Mennella, V. Trends Cell Biol. 2015, 25, 730. |
[9] | Huang, B.; Bates, M.; Zhuang, X.-W. Annu. Rev. Biochem. 2009, 78, 993. |
[10] | Wang, L.; Frei, M. S.; Salim, A.; Johnsson, K. J. Am. Chem. Soc. 2019, 141, 2770. |
[11] | Fernández-Suárez, M.; Ting, A. Y. Nat. Rev. Mol. Cell Biol. 2008, 9, 929. |
[12] | Uno, S. N.; Tiwari, D. K.; Kamiya, M.; Arai, Y.; Nagai, T.; Urano, Y. Microscopy 2015, 64, 263. |
[13] | van de Linde, S.; Heilemann, M.; Sauer, M. Annu. Rev. Phys. Chem. 2012, 63, 519. |
[14] | Yang, Z.-G.; Xiong, J.; Zhang, W.; Li, W.; Pan, W.-H; Zhang, J.-G.; Gu, Z.-Y.; Huang, M.-N.; Qu, J.-L. Acta Chim. Sinica 2020, 78, 130. (in Chinese) |
[14] | (杨志刚, 熊佳, 张炜, 李文, 潘文慧, 张建国, 顾振宇, 黄美娜, 屈军乐, 化学学报, 2020, 78, 130.) |
[15] | Shcherbakova, D. M.; Sengupta, P.; Lippincott-Schwartz, J.; Verkhusha, V. V. Annu. Rev. Biophys. 2014, 43, 303. |
[16] | Mishin, A. S.; Belousov, V. V.; Solntsev, K. M.; Lukyanov, K. A. Curr. Opin. Chem. Biol. 2015, 27, 1. |
[17] | Yu, M.; Zhang, Z.-J.; Zhu, G.-W.; Gu, Z.-H.; Duan, Y.-L.; Yu, L.-C.; Gao, G.-B.; Sun, T.-L. Acta Chim. Sinica 2021, 79, 1281. (in Chinese) |
[17] | (余梦, 张子俊, 朱国委, 谷振华, 段玉霖, 余良翀, 高冠斌, 孙涛垒, 化学学报, 2021, 79, 1281.) |
[18] | Jin, D.-Y.; Xi, P.; Wang, B.-M.; Zhang, L.; Enderlein, J.; van Oijen, A. M. Nat. Methods 2018, 15, 415. |
[19] | Pan, L.-X.; Huang, Y.-Q.; Sheng, K.; Zhang, R.; Fan, Q.-L.; Huang, W. Acta Chimica Sinica, 2021, 79, 1097. (in Chinese) |
[19] | (潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维, 化学学报, 2021, 79, 1097.) |
[20] | Cai, Z.; Zhang, Y.-W.; Jiang, L.-P.; Zhu, J.-J. Acta Chim. Sinica 2021, 79, 481. (in Chinese) |
[20] | (蔡政, 张颖雯, 姜立萍, 朱俊杰, 化学学报, 2021, 79, 481.) |
[21] | Gao, H.-Q.; Jiao, D.; Ou, H.-L.; Zhang, J.-T.; Ding, D. Acta Chim. Sinica 2021, 79, 319. (in Chinese) |
[21] | (高贺麒, 焦迪, 欧翰林, 章经天, 丁丹, 化学学报, 2021, 79, 319.) |
[22] | Luo, X.-R.; Chen, M.-W.; Yang, Q.-L. Acta Chim. Sinica 2020, 78, 373. (in Chinese) |
[22] | (罗兴蕊, 陈敏文, 杨晴来, 化学学报, 2020, 78, 373.) |
[23] | Sang, R.-Y.; Xu, X.-P.; Wang, Q.; Fan, Q.-L.; Huang, W. Acta Chim. Sinica 2020, 78, 901. (in Chinese) |
[23] | (桑若愚, 许兴鹏, 王其, 范曲立, 黄维, 化学学报, 2020, 78, 901.) |
[24] | Ren, J.-B.; Wang, L.; Guo, R.; Tang, Y.-H.; Zhou, H.-M.; Lin, W.-Y. Acta Chim. Sinica 2021, 79, 87. (in Chinese) |
[24] | (任江波, 王蕾, 郭锐, 唐永和, 周红梅, 林伟英, 化学学报, 2021, 79, 87.) |
[25] | Hübner, K. Chem. Unserer Zeit 2006, 40, 274. |
[26] | Travis, A. S. Technol. Cult. 1990, 31, 51. |
[27] | Beija, M.; Afonso, C. A.; Martinho, J. M. G. Chem. Soc. Rev. 2009, 38, 2410. |
[28] | Lavis, L. D. Annu. Rev. Biochem. 2017, 86, 825. |
[29] | Lavis. L. D.; Raines. R. T. ACS Chem. Biol. 2014, 9, 855. |
[30] | Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142. |
[31] | Zheng, Q.-S.; Lavis, L. D. Curr. Opin. Chem. Biol. 2017, 39, 32. |
[32] | Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899. |
[33] | Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R. Chem. Phys. Lett. 1973, 19, 315. |
[34] | Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971. |
[35] | Ozawa, R.; Hayashita, T.; Matsui, T.; Nakayama, C.; Yamauchi, A.; Suzuki, I. J. Incl. Phenom. Macrocycl. Chem. 2008, 60, 253. |
[36] | Wang, C.; Chi, W.-J.; Qiao, Q.-L.; Tan, D.; Xu, Z.-C.; Liu, X.-G. Chem. Soc. Rev. 2021, 50, 12656. |
[37] | Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A. J. Lumin. 1979, 18-19, 420. |
[38] | Jones, G.; Jackson, W. R.; Choi, C. Y.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294. |
[39] | Whitaker, J. E.; Haugland, R. P.; Ryan, D.; Hewitt, P. C.; Haugland, R. P.; Prendergast, F. G. Anal. Biochem. 1992, 207, 267. |
[40] | Kubin, R. F.; Fletcher, A. N. J. Lumin. 1982, 27, 445. |
[41] | Song, X.-Z.; Johnson, A.; Foley, J. J. Am. Chem. Soc. 2008, 130, 17652. |
[42] | Grimm, J. B.; English, B. P.; Chen, J.-J.; Slaughter, J. P.; Zhang, Z.-J.; Revyakin, A.; Patel, R.; Macklin, J. J.; Normanno, D.; Singer, R. H.; Lionnet, T.; Lavis, L. D. Nat. Methods 2015, 12, 244. |
[43] | Grimm, J. B.; Muthusamy, A. K.; Liang, Y.-J.; Brown, T. A.; Lemon, W. C.; Patel, R.; Lu, R.-W.; Macklin, J. J.; Keller, P. J.; Ji, N.; Lavis, L. D. Nat. Methods 2017, 14, 987. |
[44] | Liu, X.-G.; Qiao, Q.-L.; Tian, W.-M.; Liu, W.-J.; Chen, J.; Lang, M. J.; Xu, Z.-C. J. Am. Chem. Soc. 2016, 138, 6960. |
[45] | Du, J.-J.; Gu, Q.-Y.; Chen, J.-Y.; Fan, J.-L.; Peng, X.-J. Sens. Actuators B Chem. 2018, 265, 204. |
[46] | Xu, Z.-Y.; Zhao, X.-F.; Zhou, M.; Zhang, Z.-J.; Qin, T.-Y.; Wang, D.; Wang, L.; Peng, X.-J.; Liu, B. Sens. Actuators B Chem. 2021, 345, 130367. |
[47] | Ye, Z.-W; Yang, W.; Wang, C.; Zheng, Y.; Chi, W.-J; Liu, X.-G; Huang, Z.-L; Li, X.-Y.; Xiao, Y. J. Am. Chem. Soc. 2019, 141, 14491. |
[48] | Lv, X.; Gao, C.-M.; Han, T.-H.; Shi, H.; Guo, W. Chem. Commun. 2020, 56, 715. |
[49] | Lv, X.; Han, T.-H.; Wu, Y.; Zhang, B.-R.; Guo, W. Chem. Commun. 2021, 57, 9744. |
[50] | Singha, S.; Kim, D.; Roy, B.; Sambasivan, S.; Moon, H.; Rao, A. S.; Kim, J.; Joo, Y. T.; Park, J. W.; Rhee, Y. M.; Wang, T.; Kim, K. H.; Shin, Y. H.; Jung, J.; Ahn, K. H. Chem. Sci. 2015, 6, 4335. |
[51] | Hoelzel, C. A.; Hu, H.; Wolstenholme, C. H.; Karim, B. A.; Munson, K. T.; Jung, K. H.; Zhang, H.; Liu, Y.; Yennawar, H. P.; Asbury, J. B.; Li, X.-S.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 4785. |
[52] | Butkevich, A. N.; Bossi, M. L.; Lukinavic?ius, G.; Hell, S. W. J. Am. Chem. Soc. 2019, 141, 981. |
[53] | Kuznetsova, N. A.; Kaliya, O. L. Russ. Chem. Rev. 1992, 61, 683. |
[54] | Winters, B. H.; Mandelberg, H. I.; Mohr, W. B. Appl. Phys. Lett. 1974, 25, 723. |
[55] | Chen, C.-C.; Lu, C.-S.; Mai, F.-D.; Weng, C.-S. J. Hazard. Mater. 2006, 137, 1600. |
[56] | Li, X.-Z.; Liu, G.-M.; Zhao, J.-C. New J. Chem. 1999, 23, 1193. |
[57] | Evans, N. A. J. Soc. Dyers Colour. 1973, 89, 332. |
[58] | Grimm, J. B.; Xie, L.-Q.; Casler, J. C.; Patel, R.; Tkachuk, A. N.; Falco, N.; Choi, H.; Lippincott-Schwartz, J.; Brown, T. A.; Glick, B. S.; Liu, Z.; Lavis, L. D. JACS Au 2021, 1, 690. |
[59] | Rappoport, D.; Furche, F. J. Am. Chem. Soc. 2004, 126, 1277. |
[60] | Köhn, A.; Hättig, C. J. Am. Chem. Soc. 2004, 126, 7399. |
[61] | Jödicke, C. J.; Lüthi, H. P. J. Am. Chem. Soc. 2003, 125, 252. |
[62] | Wang, C.; Qiao, Q.-L.; Chi, W.-J.; Chen, J.; Liu, W.-J.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X.-F.; Zhou, W.; Xu, N.; Zhang, Q.-S.; Xu, Z.-C.; Liu, X.-G. Angew. Chem. Int. Ed. 2020, 59, 10160. |
/
〈 |
|
〉 |