研究评论

硒化亚锗薄膜太阳能电池研究进展

  • 闫彬 ,
  • 薛丁江 ,
  • 胡劲松
展开
  • 中国科学院化学研究所 分子纳米结构与纳米技术院重点实验室 北京 100190

闫彬, 北京工业大学材料与制造学部在读博士生, 2021年进入中国科学院化学研究所胡劲松研究员和薛丁江研究员团队联合培养. 研究方向为无机薄膜太阳能电池.

薛丁江, 中国科学院化学研究所研究员. 研究方向为无机薄膜太阳能电池, 具体包括GeSe、GeS及无机钙钛矿薄膜太阳能电池.

胡劲松, 中国科学院化学研究所研究员. 主要从事氢能非贵金属电催化和低成本薄膜太阳能电池研究.

庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-30

  网络出版日期: 2022-03-23

基金资助

国家自然科学基金(21922512); 国家自然科学基金(21875264)

Recent Progress in GeSe Thin-Film Solar Cells

  • Bin Yan ,
  • Ding-Jiang Xue ,
  • Jin-Song Hu
Expand
  • CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-30

  Online published: 2022-03-23

Supported by

National Natural Science Foundation of China(21922512); National Natural Science Foundation of China(21875264)

摘要

硒化亚锗(GeSe)禁带宽度合适(≈1.14 eV), 吸光系数大(>105 cm-1), 迁移率高(128.7 cm2•V–1•s–1), 价带顶中包含反键轨道赋予了其本征缺陷良性, 理论光电转换效率可达30%以上, 适合于制作高效薄膜太阳能电池; 同时GeSe具有毒性低、储量丰富、组分简单及稳定性强等优点, 还易于通过低成本的升华法进行薄膜制备, 从而在大规模应用方面具有巨大潜力. 以GeSe为研究对象, 介绍了GeSe基本性质, 总结了GeSe薄膜制备研究进展, 阐述了GeSe薄膜太阳能电池研究现状, 并展望了其今后发展方向与趋势.

本文引用格式

闫彬 , 薛丁江 , 胡劲松 . 硒化亚锗薄膜太阳能电池研究进展[J]. 化学学报, 2022 , 80(6) : 797 -804 . DOI: 10.6023/A21120605

Abstract

Germanium monoselenide (GeSe) is a promising photovoltaic absorber material for thin-film solar cells due to its appropriate bandgap (about 1.14 eV), high absorption coefficient (>105 cm–1 at visible light), large carrier mobility (about 128.7 cm2•V–1•s–1) and benign defect properties arising from its antibonding states at the valence band maximum. The theoretical Shockley-Quiesser efficiency limit for GeSe single junction solar cells determined by its bandgap is above 30%. Moreover, this simple binary compound possesses earth-abundant, nontoxic constituents and high stability in ambient atmosphere. The easy sublimation feature of GeSe enables the deposition of high-quality films through an industrial close-space sublimation method. The fundamental properties of GeSe with emphasis on the material, optical, electrical, and defect properties are introduced, and then the recent progress of fabrication of GeSe thin films and solar cells is summarized. Finally, a brief perspective on the further development of GeSe thin-film solar cells is provided.

参考文献

[1]
Lee, T. D.; Ebong, A. U. Renewable Sustainable Energy Rev. 2017, 70, 1286.
[2]
Xue, Q.; Sun, C.; Hu, Z.-C.; Huang, F.; Ye, X.-L.; Cao, Y. Acta Chim. Sinica 2015, 73, 179. (in Chinese)
[2]
(薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛, 化学学报, 2015, 73, 179.)
[3]
Zhou, J.-Z.; Xu, X.; Duan, B.-W.; Shi, J.-J.; Luo, Y.-H.; Wu, H.-J.; Li, D.-M.; Meng, Q.-B. Acta Chim. Sinica 2021, 79, 303. (in Chinese)
[3]
(周家正, 徐啸, 段碧雯, 石将建, 罗艳红, 吴会觉, 李冬梅, 孟庆波, 化学学报, 2021, 79, 303.)
[4]
Burst, J. M.; Duenow, J. N.; Albin, D. S.; Colegrove, E.; Reese, M. O.; Aguiar, J. A.; Jiang, C.-S.; Patel, M. K.; Al-Jassim, M. M.; Kuciauskas, D.; Swain, S.; Ablekim, T.; Lynn, K. G.; Metzger, W. K. Nat. Energy 2016, 1, 16015.
[5]
Liu, S.-C.; Li, Z.-B.; Yang, Y.-S.; Wang, X.; Chen, Y.-X.; Xue, D.-J.; Hu, J.-S. J. Am. Chem. Soc. 2019, 141, 18075.
[6]
Sobayel, K.; Shahinuzzaman, M.; Amin, N.; Karim, M. R.; Dar, M. A.; Gul, R.; Alghoul, M. A.; Sopian, K.; Hasan, A. K. M.; Akhtaruzzaman, M. Solar Energy 2020, 207, 479.
[7]
Yang, K.-J.; Son, D. H.; Sung, S. J.; Sim, J. H.; Kim, Y. I.; Park, S. N.; Jeon, D. H.; Kim, J. H.; Hwang, D. K.; Jeon, C. K.; Nam, D.; Cheong, H.; Kang, J.-K.; Kim, D. H. J. Mater. Chem. A 2016, 4, 10151.
[8]
Wu, J.-P.; Liu, S.-C.; Li, Z.-B.; Wang, S.; Xue, D.-J.; Lin, Y.; Hu, J.-S. Natl. Sci. Rev. 2021, 8, nwab047.
[9]
https://www.nrel.gov/pv/cell-efficiency.html (accessed December 2021).
[10]
Ibers, J. Nat. Chem. 2009, 1, 508.
[11]
Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. Adv. Energy Mater. 2014, 4, 1301465.
[12]
Yang, Y.; Lin, F.-Y.; Zhu, C.-T.; Chen, T.; Ma, S.-P.; Luo, Y.; Zhu, L.; Guo, X.-Y. Acta Chim. Sinica 2020, 78, 217. (in Chinese)
[12]
(杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益, 化学学报, 2020, 78, 217.)
[13]
Li, Z.-Q.; Liang, X.-Y.; Li, G.; Liu, H.-X.; Zhang, H.-Y.; Guo, J.-X.; Chen, J.-W.; Shen, K.; San, X.-Y.; Yu, W.; Schropp, R. E. I.; Mai, Y.-H. Nat. Commun. 2019, 10, 125.
[14]
Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Brandt, R. E.; Poindexter, J. R.; Lee, Y.-S.; Sun, L.-Z.; Polizzotti, P.; Park, H. H.; Gordon, R. G.; Buonassisi, T. Adv. Mater. 2014, 26, 7488.
[15]
Xue, D.-J.; Yang, B.; Yuan, Z.-K.; Wang, G.; Liu, X.-S.; Zhou, Y.; Hu, L.; Pan, D.-C.; Chen, S.-Y.; Tang, J. Adv. Energy Mater. 2015, 5, 1501203.
[16]
Musselman, K. P.; Marin, A.; Mende, L. S.; MacManus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202.
[17]
Xue, D.-J.; Shi, H.-J.; Tang, J. Acta Phys. Sin. 2015, 64, 038406. (in Chinese)
[17]
(薛丁江, 石杭杰, 唐江, 物理学报, 2015, 64, 038406.)
[18]
Wang, C.; Du, X.; Wang, S.-Y.; Deng, H.; Chen, C.; Niu, G.-D.; Pan, J.-C.; Li, K.-H.; Lu, S.-C.; Lin, X.-T.; Song, H.-S.; Tang, J. Front. Optoelectron. 2021, 14, 314.
[19]
Tang, R.-F.; Wang, X.-M.; Lian, W.-T.; Huang, J.-L.; Wei, Q.; Huang, M.-L.; Yin, Y.-W.; Jiang, C.-H.; Yang, S.-F.; Xing, G.-C.; Chen, S.-Y.; Zhu, C.-F.; Hao, X.-J.; Green, M. A.; Chen, T. Nat. Energy 2020, 5, 587.
[20]
Zhou, X.; Zhang, Q.; Gan, L.; Li, H.-Q.; Xiong, J.; Zhai, T.-Y. Adv. Sci. 2016, 3, 1600177.
[21]
Lu, W.-B.; Fang, Y.-Y.; Li, Z.-B.; Li, S. M.; Liu, S.-C.; Feng, M.-J.; Xue, D.-J.; Hu, J.-S. Chem. Commun. 2021, 57, 11461.
[22]
Liu, S.-C.; Yang, Y.-S.; Li, Z.-B.; Xue, D.-J.; Hu, J.-S. Mater. Chem. Front. 2020, 4, 775.
[23]
Xue, D.-J.; Liu, S.-C.; Dai, C.-M.; Chen, S.; He, C.; Zhao, L.; Hu, J.-S.; Wan, L.-J. J. Am. Chem. Soc. 2017, 139, 958.
[24]
Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X.-W.; Jiang, L.; Dong, H.-L.; Wei, Z.-M.; Li, J.-B.; Hu, W.-P. J. Am. Chem. Soc. 2017, 139, 14976.
[25]
Liu, S.-C.; Dai, C.-M.; Min, Y.-M.; Hou, Y.; Proppe, A. H.; Zhou, Y.; Chen, C.; Chen, S.-Y.; Tang, J.; Xue, D.-J.; Sargent, E. H.; Hu, J.-S. Nat. Commun. 2021, 12, 670.
[26]
Liu, S.-C.; Mi, Y.; Xue, D.-J.; Chen, Y.-X.; He, C.; Liu, X. F.; Hu, J.-S.; Wan, L.-J. Adv. Electron. Mater. 2017, 3, 1700141.
[27]
Solanki, G. K.; Deshpande, M. P.; Agarwal, M. K.; Patel, P. D.; Vaidya, S. N. J. Mater. Sci. Lett. 2003, 22, 985.
[28]
Liu, S.-C.; Li, Z.-B.; Wu, J.-P.; Zhang, X.; Feng, M.-J.; Xue, D.-J.; Hu, J.-S. Sci. China Mater. 2021, 64, 2118.
[29]
Li, Z.-B.; Yan, H.-J.; Liu, X.-S.; Liu, S.-C.; Feng, M. J.; Wang, X.; Yan, B.; Xue, D.-J. J. Phys. Chem. Lett. 2021, 12, 10249.
[30]
Zhou, Y.; Li, Y.; Luo, J.-J.; Li, D.-B.; Liu, X.-S.; Chen, C.; Song, H.-B.; Ma, J.-Y.; Xue, D.-J.; Yang, B.; Tang, J. Appl. Phys. Lett. 2017, 111, 013901.
文章导航

/