研究论文

马来松香酸和纳米氧化铝颗粒协同稳定具有pH响应性的Pickering乳液

  • 贺续发 ,
  • 贾康乐 ,
  • 余龙飞 ,
  • 刘明杰 ,
  • 郑小珊 ,
  • 李欢玲 ,
  • 辛锦兰 ,
  • 黄淋佳
展开
  • a 广东工业大学轻工化工学院 广州 510006
    b 广东省科学院化工研究所广东省工业表面活性剂重点实验室 广州 510665

收稿日期: 2021-12-16

  网络出版日期: 2022-03-29

基金资助

国家自然科学基金(21802025)

pH-Responsive Pickering Emulsions Synergistically Stabilized by Maleopimaric Acid and Alumina Nanoparticles

  • Xufa He ,
  • Kangle Jia ,
  • Longfei Yu ,
  • Mingjie Liu ,
  • Xiaoshan Zheng ,
  • Huanling Li ,
  • Jinlan Xin ,
  • Linjia Huang
Expand
  • a College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006
    b Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665
* E-mail: (K.J.), Tel.: +86-020-32373291 (K.J.);

Received date: 2021-12-16

  Online published: 2022-03-29

Supported by

National Natural Science Foundation of China(21802025)

摘要

使用有机颗粒稳定Pickering乳液受到越来越多的关注, 润湿性可调的有机颗粒且结合纳米无机颗粒协同稳定不同类型的Pickering乳液却鲜有报道. 系统研究了基于具有多羧酸基团的松香基衍生物马来松香(MPA)与纳米Al2O3颗粒在不同pH条件下形成的乳液类型及相关机理. 研究发现, 在单一MPA颗粒体系条件下, pH可以诱导乳液的类型由W/O Pickering乳液到O/W Pickering乳液, 到最后O/W乳液的转变, MPA的亲水性随着pH升高而增强是该乳液转变的原因. 当纳米Al2O3颗粒加入到MPA中后, 吸附在MPA颗粒上的亲水性Al2O3导致MPA颗粒亲水性增加, 从而可以使W/O Pickering乳液转变为O/W Pickering乳液(pH=1). 当pH=6时, MPA分子与纳米Al2O3颗粒同时具有较强的亲水性且分别无法形成稳定的乳液, 但两者的混合体系可以形成稳定的W/O Pickering乳液, 这是因为MPA分子与纳米Al2O3颗粒可以在水溶液中形成疏水性较强的络合物. 另外, 研究了MPA浓度及油相体积分数对乳液外观及粒径的影响, 发现随着MPA浓度增加Pickering乳液的粒径逐渐减小, 增加油相的体积分数会引起粒径的增大. 最后, 利用Zeta电势、颗粒在油水界面吸附率、接触角及表/界面张力研究了稳定Pickering乳液的稳定机理, 在油水界面上吸附的类似盔甲状颗粒层及颗粒层之间形成的网状结构是乳液液滴保持稳定的原因. 为Pickering乳液的绿色化制备提供了一种新的途径, 将在化妆品、医药及新材料等领域得到重要应用.

本文引用格式

贺续发 , 贾康乐 , 余龙飞 , 刘明杰 , 郑小珊 , 李欢玲 , 辛锦兰 , 黄淋佳 . 马来松香酸和纳米氧化铝颗粒协同稳定具有pH响应性的Pickering乳液[J]. 化学学报, 2022 , 80(6) : 765 -771 . DOI: 10.6023/A21120567

Abstract

Using organic particles to stabilize Pickering emulsions has attracted more and more attention. However, Pickering emulsions synergistically stabilized by organic particles with adjustable wettability combined with inorganic particles is rarely reported. Herein, maleopimaric acid (MPA) with multi-carboxylic acid groups and alumina nanoparticles are used to stabilize Pickering emulsions, and the transitions of the type of Pickering emulsions induced by pH and related mechanisms are systematically studied. With the increase of pH, resulting in the change of the type of emulsions from a W/O Pickering emulsion to an O/W Pickering emulsion to an O/W emulsion when only MPA is used. The increase of the hydrophilicity of MPA is the reason for the transformation of the emulsion. When alumina nanoparticles are added to the system, W/O Pickering emulsions can be transformed into O/W Pickering emulsions (pH=1), which is attributed to the increase of the hydrophilicity of MPA particles caused by the adsorption of alumina nanoparticles on the surface of MPA particles. When pH=6, both MPA particles and alumina nanoparticles have strong hydrophilicity and cannot form stable emulsions respectively, but the mixture of the two can form stable W/O Pickering emulsions. It is because that MPA particles and alumina nanoparticles can form hydrophobic complexes in aqueous solution. In addition, the influence of MPA concentration and volume fraction of oil phase on the appearance and droplet size of Pickering emulsion is studied. It is found that the droplet size of Pickering emulsion gradually decreases with the increase of MPA concentration. However, the increase of volume fraction of oil phase will cause the increase of droplet size. Finally, the stability mechanism of Pickering emulsion is studied by the measurement of Zeta potential, adsorption rate of particles at the oil-water interface, three phase contact angle and surface/interface tensions. The armor-like particles layer adsorbed on the oil-water interface and the network structure formed between the particles are the reason for the stability of emulsion droplets. This study provides a new avenue for the green preparation of Pickering emulsions, which will be important applications in the fields of cosmetics, medicine and new materials.

参考文献

[1]
Wu, J.; Ma, G. H. Small 2016, 12, 4582.
[2]
Ortiz, D. G.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Engineering 2020, 6, 468.
[3]
Zhang, X.; Jia, K. L.; Zhang, L.; Zhang, J. J.; Dai, Y. Q.; Yu, L. F.; Wen, W.; Mai, Y. L. J. Mol. Liq. 2020, 313, 113505.
[4]
Kaz, D. M.; McGorty, R.; Mani, M.; Brenner, M. P.; Manoharan, V. N. Nat. Mater. 2012, 11, 138.
[5]
Aveyard, R. Soft Matter 2012, 8, 5233.
[6]
Xu, M. D.; Xu, L. F.; Ling, Q.; Pei, X. M.; Jiang, J. Z.; Zhu, H. Y.; Cui, Z. G.; Binks, B. P. Langmuir 2019, 38, 4068.
[7]
Yang, Y. Q.; Fang, Z. W.; Chen, X.; Zhang, W. W.; Xie, Y. M.; Chen, Y. H.; Liu, Z. G.; Yuan, W. E. Front. Pharmacol. 2017, 8, 287.
[8]
Chevalier, Y.; Bolzinger, M. A. Colloid. Surface. A 2013, 439, 23.
[9]
Dupont, H.; Maingret, V.; Schmitt, V.; Heroguez, V. Macromolecules 2021, 54, 4945.
[10]
Berton-Carabin, C. C.; Schroen, K. Annu. Rev. Food Sci. T. 2015, 6, 263.
[11]
Venkataramani, D.; Tsulaia, A.; Amin, S. Adv. Colloid Interface Sci. 2020, 283, 102234.
[12]
Harman, C. L. G.; Patel, M. A.; Guldin, S.; Davies, G. L. Curr. Opin. Colloid. Interface Sci. 2019, 39, 173.
[13]
Zheng, Y.; Luo, J.; Wei, W.; Liu, X. Acta Chim. Sinica 2017, 75, 391. (in Chinese)
[13]
(郑媛, 罗静, 魏玮, 刘晓亚, 化学学报, 2017, 75, 391.)
[14]
Wang, C.; Ning, Y.; Chen, Y.; Tong, Z. Acta Chim. Sinica 2012, 70, 1721. (in Chinese)
[14]
(王朝阳, 宁印, 陈云华, 童真, 化学学报, 2012, 70, 1721.)
[15]
Arab, D.; Kantzas, A.; Bryant, S. L. J. Pet. Sci. Eng. 2018, 163, 217.
[16]
Shi, Y. L.; Xiong, D. Z.; Li, Z. Y.; Wang, H. Y.; Pei, Y. C.; Chen, Y. K.; Wang, J. J. ACS Sustain. Chem. Eng. 2018, 6, 15383.
[17]
Pi, G.; Li, Y. M.; Bao, M. T.; Mao, L. L.; Gong, H. Y.; Wang, Z. N. ACS Sustain. Chem. Eng. 2016, 4, 3095.
[18]
Jiang, J. Z.; Ma, Y. X.; Cui, Z. G.; Binks, B. P. Langmuir 2016, 32, 8668.
[19]
Liu, K. H.; Jiang, J. Z.; Cui, Z. G.; Binks, B. P. Langmuir 2017, 33, 2296.
[20]
Zhu, Y.; Fu, T.; Liu, K. H.; Ling, Q.; Pei, X. M.; Jiang, J. Z.; Cui, Z. G.; Binks, B. P. Langmuir 2017, 33, 5724.
[21]
Yu, S. J.; Zhang, H. J.; Jiang, J. Z.; Cui, Z. G.; Xia, W. S.; Binks, B. P. Green Chem. 2020, 22, 5470.
[22]
Yu, S. J.; Lv, M.; Lu, G. P.; Cai, C.; Jiang, J. Z.; Cui, Z. G. Langmuir 2021, 37, 10683.
[23]
Tao, S. N.; Guan, X.; Li, Y. X.; Jiang, H.; Gong, S. J.; Ngai, T. J. Colloid Interface Sci. 2022, 607, 1491.
[24]
Tao, S. N.; Jiang, H.; Wang, R. J.; Yang, C.; Li, Y. X.; Ngai, T. ChemComm 2020, 56, 14011.
[25]
Wei, Z. J.; Yang, Y.; Yang, R.; Wang, C. Y. Green Chem. 2012, 14, 3230.
[26]
Liu, F.; Tang, C. H. J. Agric. Food Chem. 2014, 62, 5133.
[27]
Tong, Q. L.; Yi, Z.; Ran, Y. Q.; Chen, X. Y.; Chen, G. C.; Li, X. D. ACS Sustain. Chem. Eng. 2021, 9, 4076.
[28]
Moustafa, H.; El Kissi, N.; Abou-Kandil, A. I.; Abdel-Aziz, M.S.; Dufresne, A. ACS Appl. Mater. Inter. 2017, 9, 20132.
[29]
Binks, B. P.; Philip, J.; Rodrigues, J. A. Langmuir 2005, 21, 3296.
[30]
Huang, C. L.; Sun, Z. W.; Cui, M. M.; Liu, F.; Helms, B. A.; Russell, T. P. Adv. Mater. 2016, 28, 6612.
[31]
Li, Y. A.; Liu, X. B.; Zhang, Z.; Zhao, S. J.; Tian, G. F.; Zheng, J. K.; Wang, D.; Shi, S. W.; Russell, T. P. Angew. Chem., Int. Ed. 2018, 57, 13560.
[32]
Zou, S.; Wang, C.; Wei, Z.; Liu, H.; Tong, Z. Acta Chim. Sinica 2012, 70, 133. (in Chinese)
[32]
(邹声文, 王朝阳, 魏增江, 刘浩, 童真, 化学学报, 2012, 70, 133.)
[33]
Vignati, E.; Piazza, R. Langmuir 2003, 19, 6650.
文章导航

/