双金属导电金属有机框架材料Ni/Co-CAT的制备及其氧还原催化性能研究
收稿日期: 2021-12-31
网络出版日期: 2022-04-01
基金资助
国家自然科学基金(52170019); 国家自然科学基金(51973015); 中央高校基本科研业务费专项资金(06500100); 中央高校基本科研业务费专项资金(FRF-TP-19-046AIZ)
Preparation of Bimetallic Conductive Metal-organic Framework Material Ni/Co-CAT for Electrocatalytic Oxygen Reduction
Received date: 2021-12-31
Online published: 2022-04-01
Supported by
National Natural Science Foundation of China(52170019); National Natural Science Foundation of China(51973015); Fundamental Research Funds for the Central Universities(06500100); Fundamental Research Funds for the Central Universities(FRF-TP-19-046AIZ)
以2,3,6,7,10,11 -六羟基三亚苯(2,3,6,7,10,11-Hexahydroxytriphenylene, HHTP)为有机配体, Ni、Co为金属中心, 通过水热法制备了对应的儿茶酚酯盐(Ni-catecholate、Ni-Co-catecholate, 以下简称Ni-CAT和Ni-Co-CAT). 对其进行表征后, 选用单室反应器装置搭建微生物燃料电池(Microbial fuel cell, MFC). 将Ni-CAT和Ni-Co-CAT与炭黑以3∶1的质量比混合后应用于MFC阴极催化氧还原反应(Oxygen reduction reaction, ORR). 结果表明, Ni-Co-CAT催化的MFC反应器性能最好, 其MFC反应器的最大输出电压和功率密度分别为310 mV和190 mW/cm2, 与商业Pt/C的性能相当. Ni-Co-CAT催化MFC的极限电流密度为2.84 mA/cm2, 优于Ni-CAT的2.18 mA/cm2, 表明在Ni-CAT结构中引入Co后, MFC产电效能得到了提升. 主要原因是, Ni-Co-CAT与炭黑充分混合后, 具有了更高的孔隙率和比表面积, 其结构上的金属位点M-O6 (M=Ni或Co)提供了更多的催化活性, 使Ni-Co-CAT具有最优的电化学催化性能.
关键词: 微生物燃料电池; 新型导电金属有机框架; 空气阴极; 产电效能; 氧还原反应
耿元昊 , 林小秋 , 孙亚昕 , 李惠雨 , 秦悦 , 李从举 . 双金属导电金属有机框架材料Ni/Co-CAT的制备及其氧还原催化性能研究[J]. 化学学报, 2022 , 80(6) : 748 -755 . DOI: 10.6023/A21120617
Ni-catecholate and Ni-Co-catecholate (hereafter referred to as Ni-CAT and Ni-Co-CAT) were prepared by hydrothermal method using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) as the organic ligand and Ni and Co as the metal centers, respectively. After characterization, a microbial fuel cell (MFC) was constructed in a single chamber reactor device. Single chamber air cathode microbial fuel cell reactors offer the advantages of both small reactor size and no aeration. Ni-CAT and Ni-Co-CAT were mixed with carbon black in a 3∶1 mass ratio and applied to the cathode of MFC to catalyze the oxygen reduction reaction (ORR). The experiments included the preparation of M-CAT (M=Co or Ni), the preparation of air cathode and the assembly and operation of MFC. When preparing the catalytic layer of the air cathode, the conductive MOF and carbon black were mixed in a 3∶1 mass ratio to improve the catalytic effect. Furthermore, the air cathode was mixed with dispersant (isopropanol) and polytetrafluoroethylene (PTFE) to make it waterproof and breathable. The results showed that the MFC reactor catalyzed by Ni-Co-CAT had the best performance. This is due to the fact that bimetallic MOFs have stronger oxygen reduction activity compared to their monometallic counterparts. The MFC reactor catalyzed by Ni-Co-CAT had a maximum output voltage and power density of 310 mV and 190 mW/cm2, respectively, which were comparable to the performance of commercial Pt/C. The limiting current density of the MFC reactor catalyzed by Ni-Co-CAT was 2.84 mA/cm2, which was better than that of Ni-CAT (2.18 mA/cm2), indicating that the MFC power production efficiency was enhanced by the introduction of Co in the Ni-CAT structure. The main reason is that Ni-Co-CAT has a higher porosity and specific surface area when fully mixed with carbon black, and the metal sites M-O6 (M=Ni or Co) on its structure provide more catalytic activity, which gives Ni-Co-CAT an optimal electrochemical catalytic performance.
[1] | Han, W.; Yan, X.; Jiang, Y.; Ping, M.; Deng, X.; Zhang, Y. J. Wuhan Univ. Technol., Mater. Sci. Ed. 2020, 35, 280. |
[2] | Chen, J.; Yang, J.; Jiang, L.; Wang, X.; Yang, D.; Wei, Q.; Wang, Y.; Wang, R.; Liu, Y.; Yang, Y. Bioresour. Technol. 2021, 337, 125430. |
[3] | Narayanasamy, S.; Jayaprakash, J. Fuel 2021, 301, 121016. |
[4] | Prathiba, S.; Kumar, P. S.; Vo, D. N. Chemosphere 2022, 286, 131856. |
[5] | Hoang, A. T.; Nizetic, S.; Ng, K. H.; Papadopoulos, A. M.; Le, A. T.; Kumar, S.; Hadiyanto, H.; Pham, V. V. Chemosphere 2022, 287, 132285. |
[6] | Dwivedi, K. A.; Huang, S. J.; Wang, C. T. Chemosphere 2022, 287, 132248. |
[7] | Gul, H.; Raza, W.; Lee, J.; Azam, M.; Ashraf, M.; Kim, K. H. Chemosphere 2021, 281, 130828. |
[8] | Ramya, M.; Senthil Kumar, P. Chemosphere 2022, 288, 132512. |
[9] | Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Chem 2019, 5, 1486. |
[10] | Iannaci, A.; Ingle, S.; Dominguez, C.; Longhi, M.; Merdrignac-Conanec, O.; Ababou-Girard, S.; Barriere, F.; Colavita, P. E. Bioelectrochemistry 2021, 142, 107937. |
[11] | Chaturvedi, A.; Kundu, P. P. J. Environ. Chem. Eng. 2021, 9, 105662. |
[12] | Sun, M.; Zhai, L.; Li, W.; Yu, H. Chem. Soc. Rev. 2016, 45, 2847. |
[13] | Liu, X.; Li, W.; Yu, H. Chem. Soc. Rev. 2014, 43, 7718. |
[14] | Khandaker, S.; Das, S.; Hossain, M. T.; Islam, A.; Miah, M. R.; Awual, M. R. J. Mol. Liq. 2021, 344, 117795. |
[15] | Li, H.; Zhang, X.; Liu, Y.; Wang, J.; Lin, X.; Li, C. Energy Technol. 2021, 9, 2100402. |
[16] | Li, H.; Zhang, X.; Qin, Y.; Liu, Y.; Wang, J.; Peng, L.; Li, C. J. Power Sources 2021, 512, 230522. |
[17] | Chang, Z.; Qiao, Y.; Yang, H.; Deng, H.; Zhu, X.; He, P.; Zhou, H. Acta Chim. Sinica 2021, 79, 139. (in Chinese) |
[17] | (常智, 乔宇, 杨慧军, 邓瀚, 朱星宇, 何平, 周豪慎, 化学学报, 2021, 79, 139.) |
[18] | Guo, L.; Sun, J.; Wei, J.; Liu, Y.; Hou, L.; Yuan, C. Carbon Energy 2020, 2, 203. |
[19] | Li, C.; Zhang, L.; Chen, J.; Li, X.; Sun, J.; Zhu, J.; Wang, X.; Fu, Y. Nanoscale 2021, 13, 485. |
[20] | Zhuang, Z.; Liu, D. Nano-micro Lett. 2020, 12, 132. |
[21] | Deng, X.; Hu, J.; Luo, J.; Liao, W.; He, J. Top. Curr. Chem. 2020, 378, 27. |
[22] | Shi, Y.; Wu, Y.; Wang, S.; Zhao, Y.; Li, T.; Yang, X.; Zhang, T. J. Am. Chem. Soc. 2021, 143, 4017. |
[23] | Mei, P.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78, 1041. (in Chinese) |
[23] | (梅佩, 张媛媛, 冯霄, 化学学报, 2020, 78, 1041.) |
[24] | Sun, L.; Wang, H.; Yu, J.; Zhou, X. Acta Chim. Sinica 2020, 78, 888. (in Chinese) |
[24] | (孙炼, 王洪磊, 余金山, 周新贵, 化学学报, 2020, 78, 888.) |
[25] | Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Acta Phys. -Chim. Sin. 2020, 2010025. |
[26] | Shi, X.; Shan, Y.; Du, M.; Pang, H. Coord. Chem. Rev. 2021, 444, 214060. |
[27] | Guo, L. M.S. Thesisn, University of Ji’nan, Ji’nan, 2020. (in Chinese) |
[27] | (郭灵芝, 硕士论文, 济南大学, 济南, 2020.) |
[28] | Hmadeh, M.; Zheng, L.; Zheng, L.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. Chem. Mater. 2012, 24, 3511. |
[29] | Yoon, H.; Lee, S.; Oh, S.; Park, H.; Choi, S.; Oh, M. Small 2019, 15, 1805232. |
[30] | Duan, J.; Chen, S.; Zhao, C. Nat. Commun. 2017, 8, 15341. |
[31] | Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. J. Am. Chem. Soc. 2015, 137, 118. |
[32] | Zhong, G.; Wang, H.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943. (in Chinese) |
[32] | (钟国玉, 王红娟, 余皓, 彭峰, 化学学报, 2017, 75, 943.) |
[33] | Liu, X.; Hu, W.; Jiang, W.; Yang, Y.; Niu, S.; Sun, B.; Wu, J.; Hu, J. ACS Appl. Mater. Interfaces 2017, 9, 28473. |
[34] | Liu, X.; Zhuo, M.; Zhang, W.; Gao, M.; Liu, X.; Sun, B.; Wu, J. Ultrason. Sonochem. 2020, 67, 105179. |
[35] | Zhang, Z.; Ge, C.; Chen, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. (in Chinese) |
[35] | (张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77, 60.) |
[36] | Zhang, X.; Liu, Y.; Zheng, L.; Zhang, Q.; Li, C. Biochem. Eng. J. 2021, 173, 108095. |
/
〈 |
|
〉 |