电场下偶氮苯衍生物分子顺反异构化反应机理的理论研究
收稿日期: 2022-01-30
网络出版日期: 2022-04-06
基金资助
国家自然科学基金(22073005)
Theoretical Study on the Isomerization Mechanism of Azobenzene Derivatives under Electric Field
Received date: 2022-01-30
Online published: 2022-04-06
Supported by
National Natural Science Foundation of China(22073005)
本工作采用密度泛函理论(DFT)方法计算研究了不同电场强度下偶氮苯衍生物2'-对甲苯偶氮基-1,1':4,4'-三苯基- 4,4''二羧酸(TTDA)顺反异构化反应的机理. TTDA经过C—N1=N2角度顺反异构化过程存在三种可能的异构化模式 (N=N偶氮基团中与大取代基相连的N原子称为N2, 与小取代基相连的N原子称为N1), 绕N1或N2原子的反转和绕N1=N2键旋转. 计算结果表明, 加入沿z轴的电场(以三联苯侧链C1→C2方向为z轴正方向), 旋转路径为反应最优路径. 此外, 还研究了沿N=N键方向加入电场(以N2→N1方向为z轴正方向), 在电场强度Fz=0.00 V•Å-1时, N1反转路径能垒较N2反转路径高. 当–0.62 V•Å-1<Fz≤0.93 V•Å-1时, 旋转路径为优势路径. 当加入沿z轴的反向电场–0.93 V•Å-1≤Fz≤–0.62 V•Å-1时, N2反转为优势路径.
王珞聪 , 李哲伟 , 岳彩巍 , 张培焕 , 雷鸣 , 蒲敏 . 电场下偶氮苯衍生物分子顺反异构化反应机理的理论研究[J]. 化学学报, 2022 , 80(6) : 781 -787 . DOI: 10.6023/A22010056
In this paper, the trans-cis isomerization mechanism of azobenzene derivative 2'-p-tolyldiazenyl-1,1':4,4'- terphenyl-4,4''-dicarboxylic acid (TTDA) under different electric field intensity was calculated and studied by symmetry destruction density functional theory (DFT). There are three possible isomerization modes of TTDA through C—N1=N2 angle trans-cis isomerization (N2 connected to large substituents and N1 connected to small substituents in azo groups), inversion around N1 or N2 atoms and rotation around N1=N2 bonds. The calculation results show that the electric field can significantly reduce the energy barrier of isomerization reaction. After adding the electric field, the electrons in trans-TTDA molecule have obvious transfer, the π orbit is polarized, and the energy level difference of HOMO (highest occupied molecular orbital) and LUMO (the lowest unoccupied molecular orbital) is significantly reduced, which also shows that the trans configuration of TTDA molecule is easier to convert to cis configuration. When the forward electric field along the z axis is added (taking the C1→C2 direction as the positive direction of the z axis), the rotation path is the optimal path. The rotation isomerization pathway around the N=N bond owns a lower free energy barrier compared to the inversion pathways. The steric effect is more important than the electrostatic effect for the isomerization of TTDA under the electric field along the C1→C2 direction. In addition, we also studied adding an electric field along the N=N bond (taking the N2→N1 direction as the positive direction of the z axis). When the electric field intensity is 0.00 V•Å-1, the inversion barrier of N1 is higher than that of N2. When –0.62 V•Å-1≤Fz≤0.93 V•Å-1, the rotation path is the dominant path. When –0.93 V•Å-1≤Fz≤–0.62 V•Å-1, N2 inversion path is the dominant path. When Fz≤–1.03 V•Å-1, the terphenyl of cis-TTDA along the N2→N1 direction is deformed. The molecular polarizability increases with the increase of electric field intensity. The electric field greatly promotes electron transfer in the isomerizaiton of TTDA as well as their electronic structures.
[1] | Helal, W.; Bories, B.; Evangelisti, S.; Leininger, T.; Maynau, D. Computational Science and Its Applications, Springer, Berlin, Heidelberg, 2006, pp. 744-751. |
[2] | Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318. |
[3] | Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B. Science 2016, 352, 1443. |
[4] | zhang, J. L.; zhong, J. Q.; Lin, J. D.; Hu, W. P.; Wu, K.; Xu, G. Q.; Wee, A. T.; Chen, W. Chem. Soc. Rev. 2015, 44, 2998. |
[5] | Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Guo, X. Science 2016, 352, 1443. |
[6] | Atesci, H.; Kaliginedi, V.; Celis Gil, J. A.; Ozawa, H.; Thijssen, J. M.; Broekmann, P.; Haga, M.-A.; van der Molen, S. J. Nat. Nanotechnol. 2018, 13, 117. |
[7] | Perrin, M. L.; Burzurí, E.; zant, H. Chem. Soc. Rev. 2015, 44, 902. |
[8] | Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039. |
[9] | Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nat. Nanotechnol. 2009, 4, 230. |
[10] | Perrin, M. L.; Verzijl, C. J. O.; Martin, C. A.; Shaikh, A. J.; Eelkema, R.; van Esch, J. H.; van Ruitenbeek, J. M.; Thijssen, J. M.; van der zant, H. S. J.; Dulić, D. Nat. Nanotechnol. 2013, 8, 282. |
[11] | Su, T. A.; Li, H.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Chem. 2015, 7, 215. |
[12] | Kim, Y.; Jeong, W.; Kim, K.; Lee, W.; Reddy, P. Nat. Nanotechnol. 2014, 9, 881. |
[13] | Reddy, P.; Jang, S.-Y.; Segalman Rachel, A.; Majumdar, A. Science 2007, 315, 1568. |
[14] | Reecht, G.; Scheurer, F.; Speisser, V.; Dappe, Y. J.; Mathevet, F.; Schull, G. Phys. Rev. Lett. 2014, 112, 047403. |
[15] | Reecht, G.; Scheurer, F.; Speisser, V.; Dappe, Y. J.; Mathevet, F.; Schull, G. Phys. Rev. Lett. 2014, 112, 047403. |
[16] | Thiele, S.; Balestro, F.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Science 2014, 344, 1135. |
[17] | Natterer, F. D.; Yang, K.; Paul, W.; Willke, P.; Choi, T.; Greber, T.; Heinrich, A. J.; Lutz, C. P. Nature 2017, 543, 226. |
[18] | Liu, Z.; Ren, S.; Guo, X. Molecular-Scale Electronics 2019, 173. |
[19] | Yin, X.; Zang, Y.; Zhu, L.; Low, J. Z.; Liu, Z. F.; Cui, J.; Neaton, J. B.; Venkataraman, L.; Campos, L. M. Sci. Adv. 2017, 3, eaao2615. |
[20] | Liu, X.; Qin, L.; Zhan, Y.; Chen, M.; Yu, Y. Acta Chim. Sinica 2020, 78, 478. (in Chinese) |
[20] | (刘晓珺, 秦朗, 詹媛媛, 陈萌, 俞燕蕾, 化学学报, 2020, 78, 478.) |
[21] | Wang, C.; Li, B.; Wang, C.; Wu, B. Acta Chim. Sinica 2022, 80, 101. (in Chinese) |
[21] | (王冲, 李宝林, 王春儒, 吴波, 化学学报, 2022, 80, 101.) |
[22] | Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica 2020, 78, 256. (in Chinese) |
[22] | (翟亚丽, 许文娟, 孟祥茹, 侯红卫, 化学学报, 2020, 78, 256.) |
[23] | Isac, D. L.; Airinei, A.; Homocianu, M.; Fifere, N.; Cojocaru, C.; Hulubei, C. J. Photoch. Photobio. A. 2020, 390, 112300. |
[24] | Sun, J.; Wu, Q.; Weng, W.; Liu, X.; Tan, P.; Sun, L. Acta Chim. Sinica 2020, 78, 1082. (in Chinese) |
[24] | (孙静静, 吴仇荣, 翁文强, 刘晓勤, 谈朋, 孙林兵, 化学学报, 2020, 78, 1082.) |
[25] | Zang, Y.; Zou, Q.; Fu, T.; Ng, F.; Fowler, B.; Yang, J.; Li, H.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Nat. Commun. 2019, 10, 4482. |
[26] | Huang, X.; Tang, C.; Li, J.; Chen, L.-C.; Zheng, J.; Zhang, P.; Le, J.; Li, R.; Li, X.; Liu, J.; Yang, Y.; Shi, J.; Chen, Z.; Bai, M.; Zhang, H.-L.; Xia, H.; Cheng, J.; Tian, Z.-Q.; Hong, W. Sci. Adv. 2019, 5, eaaw3072. |
[27] | Dutta, B. J.; Bhattacharyya, P. K. Int. J. Quantum Chem. 2015, 115, 1459. |
[28] | Shaik, S.; Ramanan, R.; Danovich, D.; Mandal, D. Chem. Soc. Rev. 2018, 47, 5125. |
[29] | Avdic, I.; Kempfer-Robertson, E. M.; Thompson, L. M. J. Phys. Chem. A 2021, 125, 8238. |
[30] | Yogitha, S. N.; Kumar, B.; Raghavendra; Imranpasha; Gupta, S. K. Mater. Sci. Eng. B 2021, 267, 115094. |
[31] | Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K.-H.; Moresco, F.; Grill, L. J. Am. Chem. Soc. 2006, 128, 14446. |
[32] | Lu, T.; Chen, Q. ChemPhysChem 2021, 22, 386. |
[33] | Meng, L.; Xin, N.; Hu, C.; Wang, J.; Gui, B.; Shi, J.; Wang, C.; Shen, C.; Zhang, G.; Guo, H.; Meng, S.; Guo, X. Nat. Commun. 2019, 10, 1450. |
[34] | Stark, J. Nature 1913, 92, 401. |
[35] | Fried, S. D.; Boxer, S. G. Annu. Rev. Biochem. 2017, 86, 387. |
[36] | Murgida, D. H.; Hildebrandt, P. Acc. Chem. Res. 2004, 37, 854. |
[37] | Bruot, C.; Hihath, J.; Tao, N. Nat. Nanotechnol. 2012, 7, 35. |
[38] | Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. |
[39] | Hratchian, H. P.; Schlegel, H. B. J. Chem. Phys. 2004, 120, 9918. |
[40] | Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. |
[41] | Legault, C. Y. CYLview, 1.0b, Universite? de Sherbrooke, 2009, http://www.cylview.org. |
[42] | Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14, 33. |
/
〈 |
|
〉 |