综述

类玻璃高分子的再加工

  • 何恩健 ,
  • 姚艳锦 ,
  • 张宇白 ,
  • 危岩 ,
  • 吉岩
展开
  • a 清华大学化学系 生命有机磷化学及化学生物学教育部重点实验室 北京 100084
    b 中国石化 石油化工科学研究院 北京 100083

何恩健, 男, 2021年本科毕业于中山大学化学学院, 现为清华大学化学系博士研究生, 导师吉岩副教授, 主要研究方向是含有动态共价键的液晶弹性体与高分子的开发与应用.

姚艳锦, 女, 2012年本科毕业于黔南民族师范学院化学化工学院, 2016年硕士毕业于华中师范大学化学学院, 现为清华大学化学系博士研究生, 导师为吉岩副教授, 主要研究方向是含有动态共价键的液晶弹性体材料的加工及应用研究.

张宇白, 女, 博士, 中级工程师, 2015年于吉林大学获得学士学位, 2016年于英国帝国理工学院获得硕士学位, 2020年于清华大学获得博士学位, 现为中国石化石油化工科学研究院职工.

危岩, 男, 1957年出生. 北京大学本科和硕士(1977~1981年)、纽约市立大学博士(1986年)、MIT博士后(1986~1987年), Drexel大学助理教授(1987年)、杜邦冠名副教授(1991年)、正教授(1995年)和瓦格納讲席教授(2004年). 曾获国家杰青基金(1998年)和教育部长江学者讲座教授(2005年)称号. 已发表学术论文1161篇(SCI引用45800余次, H指数108). 入选中组部千人计划, 于2009年底全职加盟清华大学, 主要研究方向为纳米高分子材料及其在生物医学、能源、水处理和3-D打印技术中的应用. 2014~2018年每年被爱思唯尔和汤姆森路透列为全球最高被引用的科学家之一. 2018年被聘为国家自然科学基金委基础科学中心“分子聚集发光”项目的骨干科学家.

吉岩, 女, 1977年出生, 现任清华大学化学系副教授. 本科及硕士毕业于天津大学; 2006年在北京大学获得博士学位; 2006~2011年在英国剑桥大学从事博士后研究, 2011年底加入清华大学. 2017年获国家自然科学基金优秀青年基金资助. 主要研究领域为含动态共价键的高分子、液晶弹性体、高分子纳米复合材料等.

收稿日期: 2022-02-15

  网络出版日期: 2022-04-06

基金资助

国家自然科学基金(51722303); 国家自然科学基金(21674057)

Reprocessing of Vitrimer

  • Enjian He ,
  • Yanjin Yao ,
  • Yubai Zhang ,
  • Yen Wei ,
  • Yan Ji
Expand
  • a The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084
    b Research Institute of Petroleum Processing, SINOPEC, Beijing 100083

Received date: 2022-02-15

  Online published: 2022-04-06

Supported by

National Natural Science Foundation of China(51722303); National Natural Science Foundation of China(21674057)

摘要

类玻璃高分子(vitrimer)是一类含有动态共价键的共价交联聚合物网络, 结合了热固性聚合物和热塑性聚合物的优点. 在外界刺激作用下, 类玻璃高分子的动态共价键能够可逆断裂及形成, 而交联密度不会发生变化, 这种独特的性质使其能在保持三维交联网络结构的同时, 实现再加工、回收再利用、焊接和愈合等功能. 因此, 类玻璃高分子有望解决传统热固性聚合物无法进行再加工和回收再利用等问题, 推进资源的循环利用和社会可持续发展. 重点介绍了类玻璃高分子不同的再加工方式, 包括热加工、光热加工、电热加工和小分子辅助加工, 并对各个加工方式的原理、特点和应用进行总结. 最后, 对类玻璃高分子再加工的发展进行了展望.

本文引用格式

何恩健 , 姚艳锦 , 张宇白 , 危岩 , 吉岩 . 类玻璃高分子的再加工[J]. 化学学报, 2022 , 80(7) : 1021 -1041 . DOI: 10.6023/A22020072

Abstract

Vitrimers are a kind of covalently cross-linked polymer networks containing dynamic covalent bonds, which combine the advantages of both thermosets and thermoplastics. Under external stimuli, the dynamic covalent bonds in the networks break and reform reversibly, while the cross-link density keeps unchanged. This unique property enables this kind of materials to maintain the three-dimensional cross-linked networks and exhibit various fascinating features such as reprocessing, recycling, welding, healing, etc. Thus, vitrimers are expected to solve the problems that traditional thermosets cannot be reprocessed and recycled, making it possible to promote resource recycling towards a green and sustainable society. This review mainly focuses on the reprocessing methods of vitrimers, including thermal processing, photothermal processing, electrothermal processing and small-molecule assisted processing. Then, the principles, characteristics and applications of each reprocessing method are summarized. Furthermore, the development prospects of vitrimer reprocessing are discussed.

参考文献

[1]
Lan, X. Y.; Ma, X. F.; Dai, P.; Li, B. G.; Luo, Z. Y. Polym. Bull. 2018, 3, 31. (in Chinese)
[1]
(兰晓雨, 马晓峰, 戴鹏, 李本刚, 罗振扬, 高分子通报, 2018, 3, 31.)
[2]
Gennes, P.-G. D. Scaling Concepts in Polymer Physics, Cornelll University Press, Ithaca, 1979.
[3]
Zhou, L. S.; Liu, J. X.; Wu, S. X.; Chen, G. H.; Yang, S. S.; Yang, L. B. Mater. Rep. 2020, 34, 585. (in Chinese)
[3]
(周立生, 刘剑侠, 吴淑新, 陈国辉, 杨士山, 杨立波, 材料导报, 2020, 34, 585.)
[4]
Pascault, J.-P.; Sautereau, H.; Verdu, J.; Williams, R. J. Thermosetting polymers, Marcel Dekker, New York, 2002.
[5]
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Science 2011, 334, 965.
[6]
Zhang, X. Acta. Polym. Sin. 2016, (6), 685. (in Chinese)
[6]
(张希, 高分子学报, 2016, (6), 685.)
[7]
Gao, L.; Huo, H. Y.; Zhou, D. R.; Zhang, B. Y.; Hu, J. J. Mater. Eng. 2020, 48, 68. (in Chinese)
[7]
(高亮, 霍红宇, 周典瑞, 张宝艳, 胡君, 材料工程, 2020, 48, 68.)
[8]
Denissen, W.; Winne, J. M.; Du Prez, F. E. Chem. Sci. 2016, 7, 30.
[9]
Zhao, W.; Feng, Z.; Liang, Z.; Lv, Y.; Xiang, F.; Xiong, C.; Duan, C.; Dai, L.; Ni, Y. ACS Appl. Mater. Interfaces 2019, 11, 36090.
[10]
Winne, J. M.; Leibler, L.; Du Prez, F. E. Polym. Chem. 2019, 10, 6091.
[11]
Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. J. Am. Chem. Soc. 2012, 134, 7664.
[12]
Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. ACS Macro Lett. 2012, 1, 789.
[13]
Yang, Y.; Pei, Z.; Zhang, X.; Tao, L.; Wei, Y.; Ji, Y. Chem. Sci. 2014, 5, 3486.
[14]
Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Nat. Mater. 2014, 13, 36.
[15]
Feng, Z.; Hu, J.; Zuo, H.; Ning, N.; Zhang, L.; Yu, B.; Tian, M. ACS Appl. Mater. Interfaces 2019, 11, 1469.
[16]
Denissen, W.; Rivero, G.; Nicolay, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Adv. Funct. Mater. 2015, 25, 2451.
[17]
Guerre, M.; Taplan, C.; Nicolay, R.; Winne, J. M.; Du Prez, F. E. J. Am. Chem. Soc. 2018, 140, 13272.
[18]
Taplan, C.; Guerre, M.; Winne, J. M.; Du Prez, F. E. Mater. Horiz. 2020, 7, 104.
[19]
Niu, W.; Zhang, Z.; Chen, Q.; Cao, P. F.; Advincula, R. C. ACS Mater. Lett. 2021, 3, 1095.
[20]
Obadia, M. M.; Mudraboyina, B. P.; Serghei, A.; Montarnal, D.; Drockenmuller, E. J. Am. Chem. Soc. 2015, 137, 6078.
[21]
Huang, J.; Zhang, L.; Tang, Z.; Wu, S.; Guo, B. Compos. Sci. Technol. 2018, 168, 320.
[22]
Hendriks, B.; Waelkens, J.; Winne, J. M.; Du Prez, F. E. ACS Macro Lett. 2017, 6, 930.
[23]
Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Adv. Mater. 2014, 26, 3938.
[24]
Lei, Z. Q.; Xie, P.; Rong, M. Z.; Zhang, M. Q. J. Mater. Chem. A 2015, 3, 19662.
[25]
Chao, A.; Negulescu, J.; Zhang, D. H. Macromolecules 2016, 49, 6277.
[26]
Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.; Zhang, W. Adv. Mater. 2016, 28, 2904.
[27]
Dhers, S.; Vantomme, G.; Avérous, L. Green Chem. 2019, 21, 1596.
[28]
Zheng, H.; Liu, Q.; Lei, X.; Chen, Y.; Zhang, B.; Zhang, Q. J. Polym. Sci. Pol. Chem. 2018, 56, 2531.
[29]
Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. J. Am. Chem. Soc. 2015, 137, 14019.
[30]
Fortman, D. J.; Brutman, J. P.; Hillmyer, M. A.; Dichtel, W. R. J. Appl. Polym. Sci. 2017, 134, 44984.
[31]
Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin, B. S. Macromolecules 2015, 48, 2098.
[32]
Cromwell, O. R.; Chung, J.; Guan, Z. J. Am. Chem. Soc. 2015, 137, 6492.
[33]
Rottger, M.; Domenech, T.; Van Der Weegen, R.; Breuillac, A.; Nicolay, R.; Leibler, L. Science 2017, 356, 62.
[34]
Krishnakumar, B.; Sanka, R. V. S. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Chem. Eng. J. 2020, 385, 123820.
[35]
Guerre, M.; Taplan, C.; Winne, J. M.; Du Prez, F. E. Chem. Sci. 2020, 11, 4855.
[36]
Van Zee, N. J.; Nicolaÿ, R. Prog. Polym. Sci. 2020, 104, 101233.
[37]
Spiesschaert, Y.; Taplan, C.; Stricker, L.; Guerre, M.; Winne, J. M.; Du Prez, F. E. Polym. Chem. 2020, 11, 5377.
[38]
Alabiso, W.; Schlögl, S. Polymers 2020, 12, 1660.
[39]
Xiao, R.; Huang, W. M. Macromol. Biosci. 2020, 20, 2000108.
[40]
Zhang, F.; Zhang, L.; Yaseen, M.; Huang, K. J. Appl. Polym. Sci. 2021, 138, 50260.
[41]
Zheng, J.; Png, Z. M.; Ng, S. H.; Tham, G. X.; Ye, E. Y.; Goh, S. S.; Loh, X. J.; Li, Z. B. Mater. Today 2021, 51, 586.
[42]
Tang, J.; Wan, L.; Zhou, Y.; Pan, H.; Huang, F. J. Mater. Chem. A 2017, 5, 21169.
[43]
Zhang, S.; Liu, T.; Hao, C.; Wang, L.; Han, J.; Liu, H.; Zhang, J. Green Chem. 2018, 20, 2995.
[44]
Yang, Z.; Wang, Q.; Wang, T. ACS Appl. Mater. Interfaces 2016, 8, 21691.
[45]
Chen, Q.; Yu, X.; Pei, Z.; Yang, Y.; Wei, Y.; Ji, Y. Chem. Sci. 2016, 8, 724.
[46]
Liu, T.; Hao, C.; Wang, L.; Li, Y.; Liu, W.; Xin, J.; Zhang, J. Macromolecules 2017, 50, 8588.
[47]
Chen, Q.; Li, Y.; Yang, Y.; Xu, Y.; Qian, X.; Wei, Y.; Ji, Y. Chem. Sci. 2019, 10, 3025.
[48]
Saed, M. O.; Gablier, A.; Terentejv, E. M. Adv. Funct. Mater. 2020, 30, 1906458.
[49]
Lu, X.; Guo, S.; Tong, X.; Xia, H.; Zhao, Y. Adv. Mater. 2017, 29, 1606467.
[50]
Lu, X.; Zhang, H.; Fei, G.; Yu, B.; Tong, X.; Xia, H.; Zhao, Y. Adv. Mater. 2018, 30, 1706597.
[51]
Liu, T.; Zhang, S.; Hao, C.; Verdi, C.; Liu, W.; Liu, H.; Zhang, J. Macromol. Rapid Commun. 2019, 40, 1800889.
[52]
Hao, C.; Liu, T.; Zhang, S.; Brown, L.; Li, R.; Xin, J.; Zhong, T.; Jiang, L.; Zhang, J. ChemSusChem 2019, 12, 1049.
[53]
Han, J.; Liu, T.; Zhang, S.; Hao, C.; Xin, J.; Guo, B.; Zhang, J. Ind. Eng. Chem. Res. 2019, 58, 6466.
[54]
Yang, Y.; Terentjev, E. M.; Wei, Y.; Ji, Y. Nat. Commun. 2018, 9, 1906.
[55]
Yang, Y.; Zhang, S.; Zhang, X.; Gao, L.; Wei, Y.; Ji, Y. Nat. Commun. 2019, 10, 3165.
[56]
Kaiser, S.; Novak, P.; Giebler, M.; Gschwandl, M.; Novak, P.; Pilz, G.; Morak, M.; Schlögl, S. Polymer 2020, 204, 122804.
[57]
Pritchard, R. H.; Redmann, A. L.; Pei, Z.; Ji, Y.; Terentjev, E. M. Polymer 2016, 95, 45.
[58]
Liu, Y.; Tang, Z.; Chen, Y.; Zhang, C.; Guo, B. ACS Appl. Mater. Interfaces 2018, 10, 2992.
[59]
Dyre, J. C. Rev. Mod. Phys. 2006, 78, 953.
[60]
Ruiz De Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Mater. Horiz. 2016, 3, 241.
[61]
Hendriks, B.; Waelkens, J.; Winne, J. M.; Du Prez, F. E. ACS Macro Lett. 2017, 6, 930.
[62]
Ediger, M. D.; Angell, C. A.; Nagel, S. R. J. Phys. Chem. A 1996, 100, 13200.
[63]
Meng, F.; Pritchard, R. H.; Terentjev, E. M. Macromolecules 2016, 49, 2843.
[64]
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Acta. Polym. Sin. 2018, (7), 829. (in Chinese)
[64]
(张泽平, 容敏智, 章明秋, 高分子学报, 2018, (7), 829.)
[65]
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Prog. Polym. Sci. 2018, 80, 39.
[66]
Hayashi, M. ACS Appl. Polym. Mater. 2020, 2, 5365.
[67]
Yu, K.; Shi, Q.; Li, H.; Jabour, J.; Yang, H.; Dunn, M. L.; Wang, T.; Qi, H. J. J. Mech. Phys. Solids 2016, 94, 1.
[68]
Li, H.; Zhang, B.; Yu, K.; Yuan, C.; Zhou, C.; Dunn, M. L.; Qi, H. J.; Shi, Q.; Wei, Q. H.; Liu, J.; Ge, Q. Soft Matter 2020, 16, 1668.
[69]
Zhang, B.; Li, H.; Yuan, C.; Dunn, M. L.; Qi, H. J.; Yu, K.; Shi, Q.; Ge, Q. J. Appl. Polym. Sci. 2020, 137, 49246.
[70]
Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J. RSC Adv. 2014, 4, 10108.
[71]
Yue, L.; Bonab, V. S.; Yuan, D.; Patel, A.; Karimkhani, V.; Manas-Zloczower, I. Glob. Chall. 2019, 3, 1800076.
[72]
Tellers, J.; Pinalli, R.; Soliman, M.; Vachon, J.; Dalcanale, E. Polym. Chem. 2019, 10, 5534.
[73]
Yan, P.; Zhao, W.; Fu, X.; Liu, Z.; Kong, W.; Zhou, C.; Lei, J. RSC Adv. 2017, 7, 26858.
[74]
Denissen, W.; Droesbeke, M.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Nat. Commun. 2017, 8, 14857.
[75]
Stukenbroeker, T.; Wang, W.; Winne, J. M.; Du Prez, F. E.; Nicolaÿ, R.; Leibler, L. Polym. Chem. 2017, 8, 6590.
[76]
Zhou, Y.; Goossens, J. G. P.; Sijbesma, R. P.; Heuts, J. P. A. Macromolecules 2017, 50, 6742.
[77]
Kawasaki, K.; Ube, T.; Ikeda, T. Mol. Cryst. Liq. Cryst. 2015, 614, 62.
[78]
Zeng, Y.; Liu, S.; Xu, X.; Chen, Y.; Zhang, F. Polymer 2020, 211, 123116.
[79]
Wang, W. Y.; Zha, X. J.; Bao, R. Y.; Ke, K.; Liu, Z. Y.; Yang, M. B.; Yang, W. J. Polym. Res. 2021, 28, 210.
[80]
Meng, Q. Mech. Mater. 2020, 148, 103516.
[81]
Yu, L.; Sun, X.; Jin, Y.; Zhang, W.; Long, R. Int. J. Mech. Sci. 2021, 201, 106466.
[82]
Feng, Z.; Yu, B.; Hu, J.; Zuo, H.; Li, J.; Sun, H.; Ning, N.; Tian, M.; Zhang, L. Ind. Eng. Chem. Res. 2019, 58, 1212.
[83]
Geng, H.; Wang, Y.; Yu, Q.; Gu, S.; Zhou, Y.; Xu, W.; Zhang, X.; Ye, D. ACS Sustain. Chem. Eng. 2018, 6, 15463.
[84]
Wu, S.; Yang, Z.; Fang, S.; Tang, Z.; Liu, F.; Guo, B. J. Mater. Chem. A 2019, 7, 1459.
[85]
Yu, Q.; Peng, X.; Wang, Y.; Geng, H.; Xu, A.; Zhang, X.; Xu, W.; Ye, D. Eur. Polym. J. 2019, 117, 55.
[86]
Memon, H.; Wei, Y.; Zhang, L.; Jiang, Q.; Liu, W. Compos. Sci. Technol. 2020, 199, 108314.
[87]
Zhao, X. L.; Liu, Y. Y.; Weng, Y.; Li, Y. D.; Zeng, J. B. ACS Sustainable Chem. Eng. 2020, 8, 15020.
[88]
Hajiali, F.; Tajbakhsh, S.; Marić, M. Polymer 2021, 212, 123126.
[89]
Ling, F.; Liu, Z.; Chen, M.; Wang, H.; Zhu, Y.; Ma, C.; Wu, J.; Huang, G. J. Mater. Chem. A 2019, 7, 25324.
[90]
Wu, Y.; Wei, Y.; Ji, Y. Polym. Chem. 2020, 11, 5297.
[91]
Pei, Z.; Yang, Y.; Chen, Q.; Wei, Y.; Ji, Y. Adv. Mater. 2016, 28, 156.
[92]
Wu, Y.; Yang, Y.; Qian, X.; Chen, Q.; Wei, Y.; Ji, Y. Angew. Chem., Int. Ed. 2020, 59, 4778.
[93]
Hayashi, M.; Yano, R.; Takasu, A. Polym. Chem. 2019, 10, 2047.
[94]
Wang, Z.; Tian, H.; He, Q.; Cai, S. ACS Appl. Mater. Interfaces 2017, 9, 33119.
[95]
Li, Z.; Yang, Y.; Wang, Z.; Zhang, X.; Chen, Q.; Qian, X.; Liu, N.; Wei, Y.; Ji, Y. J. Mater. Chem. A 2017, 5, 6740.
[96]
Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. J. Am. Chem. Soc. 2016, 138, 2118.
[97]
Gao, H.; Sun, Y.; Wang, M.; Wang, Z.; Han, G.; Jin, L.; Lin, P.; Xia, Y.; Zhang, K. ACS Appl. Mater. Interfaces 2021, 13, 1581.
[98]
Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. ACS Macro Lett. 2014, 3, 607.
[99]
Liu, H.; Zhang, H.; Wang, H.; Huang, X.; Huang, G.; Wu, J. Chem. Eng. J. 2019, 368, 61.
[100]
Yan, P.; Zhao, W.; Wang, Y.; Jiang, Y.; Zhou, C.; Lei, J. Macromol. Chem. Phys. 2017, 218, 1700265.
[101]
Solouki Bonab, V.; Karimkhani, V.; Manas-Zloczower, I. Macromol. Mater. Eng. 2019, 304, 1800405.
[102]
Zhao, S.; Abu-Omar, M. M. Macromolecules 2018, 51, 9816.
[103]
Ji, F.; Liu, X.; Sheng, D.; Yang, Y. Polymer 2020, 197, 122514.
[104]
Wu, X.; Yang, X.; Yu, R.; Zhao, X. J.; Zhang, Y.; Huang, W. J. Mater. Chem. A 2018, 6, 10184.
[105]
Liu, T.; Hao, C.; Zhang, S.; Yang, X.; Wang, L.; Han, J.; Li, Y.; Xin, J.; Zhang, J. Macromolecules 2018, 51, 5577.
[106]
Murphy, S. V.; Atala, A. Nat. Biotechnol. 2014, 32, 773.
[107]
Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Composites, Part B 2018, 143, 172.
[108]
Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C. K.; Dunn, M. L.; Wang, T.; Qi, H. J. Mater. Horiz. 2017, 4, 598.
[109]
Rossegger, E.; Höller, R.; Reisinger, D.; Strasser, J.; Fleisch, M.; Griesser, T.; Schlögl, S. Polym. Chem. 2021, 12, 638.
[110]
Chen, Z.; Sun, Y. C.; Wang, J.; Qi, H. J.; Wang, T.; Naguib, H. E. ACS Appl. Mater. Interfaces 2020, 12, 8740.
[111]
Qiu, J.; Ma, S.; Wang, S.; Tang, Z.; Li, Q.; Tian, A.; Xu, X.; Wang, B.; Lu, N.; Zhu, J. Macromolecules 2021, 54, 703.
[112]
Delahaye, M.; Tanini, F.; Holloway, J. O.; Winne, J. M.; Du Prez, F. E. Polym. Chem. 2020, 11, 5207.
[113]
Reisinger, D.; Kaiser, S.; Rossegger, E.; Alabiso, W.; Rieger, B.; Schlögl, S. Angew. Chem., Int. Ed. 2021, 60, 14302.
[114]
Rossegger, E.; Moazzen, K.; Fleisch, M.; Schlögl, S. Polym. Chem. 2021, 12, 3077.
[115]
Rodima, T.; Kaljurand, I.; Pihl, A.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2002, 67, 1873.
[116]
Sun, X.; Gao, J. P.; Wang, Z. Y. J. Am. Chem. Soc. 2008, 130, 8130.
[117]
Wang, Z.; Li, Z.; Wei, Y.; Ji, Y. Polymers 2018, 10, 65.
[118]
Michal, B. T.; Jaye, C. A.; Spencer, E. J.; Rowan, S. J. ACS Macro Lett. 2013, 2, 694.
[119]
Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Adv. Mater. 2012, 24, 3975.
[120]
Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolaÿ, R.; Zhang, Y.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Macromolecules 2012, 45, 142.
[121]
Kuang, X.; Mu, Q.; Roach, D. J.; Qi, H. J. Multifunct. Mater. 2020, 3, 045001.
[122]
Chen, Q.; Wei, Y.; Ji, Y. Chin. Chem. Lett. 2017, 28, 2139.
[123]
Zheng, H.; Wang, S.; Lu, C.; Ren, Y.; Liu, Z.; Ding, D.; Wu, Z.; Wang, X.; Chen, Y.; Zhang, Q. Ind. Eng. Chem. Res. 2020, 59, 21768.
[124]
Wang, H.; Yang, Y.; Zhang, M.; Wang, Q.; Xia, K.; Yin, Z.; Wei, Y.; Ji, Y.; Zhang, Y. ACS Appl. Mater. Interfaces 2020, 12, 14315.
[125]
Yan, P.; Zhao, W.; Jiang, L.; Wu, B.; Hu, K.; Yuan, Y.; Lei, J. J. Appl. Polym. Sci. 2018, 135, 45784.
[126]
Chen, G. K.; Wu, K.; Zhang, Q.; Shi, Y. C.; Lu, M. G. Macromol. Res. 2019, 27, 526.
[127]
Zhao, G.; Zhou, Y.; Wang, J.; Wu, Z.; Wang, H.; Chen, H. Adv. Mater. 2019, 31, 1900363.
[128]
Li, Z.; Zhang, X.; Wang, S.; Yang, Y.; Qin, B.; Wang, K.; Xie, T.; Wei, Y.; Ji, Y. Chem. Sci. 2016, 7, 4741.
[129]
Yang, Y.; Wang, H.; Zhang, S.; Wei, Y.; He, X.; Wang, J.; Zhang, Y.; Ji, Y. Matter 2021, 4, 3354.
[130]
Mai, V. D.; Shin, S. R.; Lee, D. S.; Kang, I. Polymers 2019, 11, 293.
[131]
Yu, K.; Shi, Q.; Dunn, M. L.; Wang, T.; Qi, H. J. Adv. Funct. Mater. 2016, 26, 6098.
[132]
Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H. J. ACS Sustainable Chem. Eng. 2018, 6, 9189.
[133]
Kuang, X.; Guo, E.; Chen, K.; Qi, H. J. ACS Sustainable Chem. Eng. 2019, 7, 6880.
[134]
Wang, S.; Ma, S.; Li, Q.; Xu, X.; Wang, B.; Yuan, W.; Zhou, S.; You, S.; Zhu, J. Green Chem. 2019, 21, 1484.
[135]
Ma, Z.; Wang, Y.; Zhu, J.; Yu, J.; Hu, Z. J. Polym. Sci. Pol. Chem. 2017, 55, 1790.
[136]
Hamel, C. M.; Kuang, X.; Chen, K.; Qi, H. J. Macromolecules 2019, 52, 3636.
[137]
Shi, Q.; Yu, K.; Dunn, M. L.; Wang, T.; Qi, H. J. Macromolecules 2016, 49, 5527.
[138]
Yang, X.; Guo, L.; Xu, X.; Shang, S.; Liu, H. Mater. Des. 2020, 186, 108248.
[139]
Kuang, X.; Shi, Q.; Zhou, Y.; Zhao, Z.; Wang, T.; Qi, H. J. RSC Adv. 2018, 8, 1493.
[140]
Hakkarainen, M.; Xu, Y.; Odelius, K. ACS Sustainable Chem. Eng. 2020, 8, 17272.
[141]
Di Mauro, C.; Malburet, S.; Genua, A.; Graillot, A.; Mija, A. Biomacromolecules 2020, 21, 3923.
[142]
Shi, X.; Luo, C.; Lu, H.; Yu, K. Polym. Eng. Sci. 2019, 59, E111.
[143]
Liu, Y.; Liu, G.; Li, Y.; Weng, Y.; Zeng, J. ACS Sustainable Chem. Eng. 2021, 9, 4638.
[144]
Xu, Y.; Fu, P.; Dai, S.; Zhang, H.; Bi, L.; Jiang, J.; Chen, Y. Ind. Crops. Prod. 2021, 171, 113978.
[145]
Zheng, H.; Liu, Q.; Lei, X.; Chen, Y.; Zhang, B.; Zhang, Q. J. Mater. Sci. 2019, 54, 2690.
[146]
Zhang, J.; Lei, Z.; Luo, S.; Jin, Y.; Qiu, L.; Zhang, W. ACS Appl. Nano Mater. 2020, 3, 4845.
[147]
Wang, S.; Ma, S.; Li, Q.; Xu, X.; Wang, B.; Yuan, W.; Zhou, S.; You, S.; Zhu, J. Green Chem. 2019, 21, 1484.
[148]
Wang, B.; Ma, S.; Yan, S.; Zhu, J. Green Chem. 2019, 21, 5781.
文章导航

/