MOF基Pd单位点催化CO酯化制碳酸二甲酯
收稿日期: 2022-02-23
网络出版日期: 2022-04-11
基金资助
科技部重点研发计划(2021YFA1500400); 科技部重点研发计划(2021YFB3801600); 国家自然科学基金(21725101); 国家自然科学基金(21871244); 国家自然科学基金(22172171); 中国科学院与美国能源部合作研究项目(211134KYSB20190109)
MOF-Stabilized Pd Single Sites for CO Esterification to Dimethyl Carbonate
Received date: 2022-02-23
Online published: 2022-04-11
Supported by
National Key Research and Development Program of China(2021YFA1500400); National Key Research and Development Program of China(2021YFB3801600); National Natural Science Foundation of China(21725101); National Natural Science Foundation of China(21871244); National Natural Science Foundation of China(22172171); International Partnership Program of Chinese Academy of Sciences(211134KYSB20190109)
碳酸二甲酯(DMC)是一种重要的工业产品, 被广泛应用于制备锂离子电池溶剂和聚碳酸酯等化工产品. 一氧化碳(CO)酯化反应制DMC是一种新型的碳一技术路线, 具有成本低、反应效率高和安全等优势, 近年来引起了广泛的研究兴趣. 许多研究表明, Pd单位点催化剂(Pd SSCs)可以催化该反应高选择性合成DMC, 却易被反应物CO还原成Pd纳米颗粒, 从而导致DMC选择性快速下降. 因此, 设计合成稳定的Pd SSCs显得尤为重要. 通常, 研究人员通过增加Pd原子与载体之间的相互作用来稳定催化剂. 在各种载体中, 金属有机框架材料(MOFs)由于具有比表面积大、稳定性好、可修饰性强等特点, 是稳定单金属位点的理想载体. 选择自身较为稳定且易修饰的UiO-66-NH2作为载体, 采用后合成修饰的方法将吡啶-2-甲醛引入UiO-66-NH2的孔中. 吡啶-2-甲醛通过与氨基进行反应连接在UiO-66-NH2的框架上, 进而创造了相近的双氮原子位点共同鳌合Pd原子, 记为PdII-UiO-66-X%. 该催化剂在反应中, 展现出极高的DMC选择性, 同时也具备良好的催化稳定性, 在70 h的连续评价中, 依旧能够保持85%以上的DMC选择性. 该工作这一发现对构筑稳定Pd SSCs高选择性催化合成DMC提供了新思路.
谢晨帆 , 徐玉平 , 高明亮 , 徐忠宁 , 江海龙 . MOF基Pd单位点催化CO酯化制碳酸二甲酯[J]. 化学学报, 2022 , 80(7) : 867 -873 . DOI: 10.6023/A22020085
Pd single site catalysts (Pd SSCs) are recognized to be efficient for CO esterification to a valuable product, dimethyl carbonate (DMC), but the tendency of reduction to Pd nanoparticles in CO atmosphere under reaction process leads to a reduced selectivity and limits the industrial application. Hence, the development of appropriate supports to stabilize Pd single sites is of great importance. Metal-organic frameworks (MOFs) are expected to become one of the most ideal choices for supporting SSCs due to their large specific surface area, good stability, and ease of modification. Herein, a stable and highly modifiable MOF, UiO-66-NH2, has been selected as the support. The pyridine-2-formaldehyde is grafted to UiO-66-NH2 by post-synthetic modification, connecting to the skeleton of UiO-66-NH2 via amine aldehyde condensation. In this way a pair of adjacent N atom sites are created to jointly chelate Pd(II) species, yielding PdII-UiO-66-X%. The Pd SSCs exhibit high DMC selectivity (>98%) in the CO esterification reaction. Moreover, PdII-UiO-66-X% shows excellent stability and more than 85% DMC selectivity can be maintained in 70 h continuous test, thanks to the good dispersion and strong interaction of Pd(II) species and the MOF support. As a control, the Pd(II) species is supported on ZrO2 to give PdII/ZrO2. Obviously, it is difficult for ZrO2 to disperse Pd(II) species and to strongly interact with them due to the absence of binding groups. As a result, PdII/ZrO2 is rapidly reduced by CO during the reaction, resulting in decreased DMC selectivity. In addition, the signals of key intermediates are detected and the reaction mechanism on PdII-UiO-66-X% is proposed based on in-situ diffuse reflectance infrared Fourier transform (in-situ DRIFT) spectra. The successful fabrication of PdII-UiO-66-X% with high selectivity and stability provides great opportunity for CO esterification to DMC.
[1] | Tundo, P.; Musolino, M.; Aricò, F. Green Chem. 2018, 20, 28. |
[2] | Tan, H.-Z.; Wang, Z.-Q.; Xu, Z.-N.; Sun, J.; Xu, Y.-P.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Today 2018, 316, 2. |
[3] | Tan, H.-Z.; Chen, Z.-N.; Xu, Z.-N.; Sun, J.; Wang, Z.-Q.; Si, R.; Zhuang, W.; Guo, G.-C. ACS Catal. 2019, 9, 3595. |
[4] | Ji, S.; Chen, Y.; Zhao, G.; Wang, Y.; Sun, W.; Zhang, Z.; Lu, Y.; Wang, D. Appl. Catal., B 2022, 304, 120922. |
[5] | Tan, H.-Z.; Wang, Z.-Q.; Xu, Z.-N.; Sun, J.; Chen, Z.-N.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Sci. Technol. 2017, 7, 3785. |
[6] | Wang, Z.-Q.; Sun, J.; Xu, Z.-N.; Guo, G.-C. Nanoscale 2020, 12, 20131. |
[7] | Wei, Y.-S.; Zhang, M.; Zou, R.; Xu, Q. Chem. Rev. 2020, 120, 12089. |
[8] | Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G. A. J. Am. Chem. Soc. 2021, 143, 60. |
[9] | Zhang, Z.; Chen, Y.; Zhou, L.; Chen, C.; Han, Z.; Zhang, B.; Wu, Q.; Yang, L.; Du, L.; Bu, Y.; Wang, P.; Wang, X.; Yang, H.; Hu, Z. Nat. Commun. 2019, 10, 1657. |
[10] | Shi, W.; Quan, Y.; Lan, G.; Ni, K.; Song, Y.; Jiang, X.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2021, 143, 16718. |
[11] | Zhang, Y.; Dong, L.-Z.; Li, S.; Huang, X.; Chang, J.-N.; Wang, J.-H.; Zhou, J.; Li, S.-L.; Lan, Y.-Q. Nat. Commun. 2021, 12, 6390. |
[12] | Jiao, L.; Wang, J.; Jiang, H.-L. Acc. Mater. Res. 2021, 2, 327. |
[13] | Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113. (in Chinese) |
[13] | (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.) |
[14] | Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Chem. Rev. 2012, 112, 1001. |
[15] | Lü, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese) |
[15] | (吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.) |
[16] | Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. |
[17] | Li, H.; Li, L.; Lin, R.-B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B. EnergyChem 2019, 1, 100006. |
[18] | Liu, D.; Wan, J.; Pang, G.; Tang, Z. Adv. Mater. 2019, 31, 1803291. |
[19] | Wu, G.; Huang, J.; Zang, Y.; He, J.; Xu, G. J. Am. Chem. Soc. 2017, 139, 1360. |
[20] | Li, B.; Ju, Z.; Zhou, M.; Su, K.; Yuan, D. Angew. Chem., Int. Ed. 2019, 58, 7687. |
[21] | Pang, J.; Di, Z.; Qin, J.-S.; Yuan, S.; Lollar, C. T.; Li, J.; Zhang, P.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H.-C. J. Am. Chem. Soc. 2020, 142, 15020. |
[22] | Qiu, X.; Zhong, W.; Bai, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 1138. |
[23] | Li, J.; Huang, H.; Xue, W.; Sun, K.; Song, X.; Wu, C.; Nie, L.; Li, Y.; Liu, C.; Pan, Y.; Jiang, H.-L.; Mei, D.; Zhong, C. Nat. Catal. 2021, 4, 719. |
[24] | Cai, G.; Jiang, H.-L. Angew. Chem., Int. Ed. 2017, 56, 563. |
[25] | Bai, X.-J.; Lu, X.-Y.; Ju, R.; Chen, H.; Shao, L.; Zhai, X.; Li, Y.-N.; Fan, F.-Q.; Fu, Y.; Qi, W. Angew. Chem., Int. Ed. 2021, 60, 701. |
[26] | Yu, F.; Jing, X.; Wang, Y.; Sun, M.; Duan, C. Angew. Chem., Int. Ed. 2021, 60, 24849. |
[27] | Feng, L.; Li, J.-L.; Day, G. S.; Lv, X.-L.; Zhou, H.-C. Chem 2019, 5, 1265. |
[28] | Cai, G.; Yan, P.; Zhang, L.; Zhou, H.-C.; Jiang, H.-L. Chem. Rev. 2021, 121, 12278. |
[29] | Xiao, J.-D.; Li, D.-D.; Jiang, H.-L. Sci. Sin. Chim. 2018, 48, 1058. (in Chinese) |
[29] | (肖娟定, 李丹丹, 江海龙, 中国科学: 化学, 2018, 48, 1058.) |
[30] | Zhang, Y.; Chu, Q.; Shi, Y.; Gao, J.; Xiong, W.; Huang, L.; Ding, Y. Acta Chim. Sinica 2021, 79, 361. (in Chinese) |
[30] | (张雅祺, 楚奇, 石勇, 高金索, 熊巍, 黄磊, 丁越, 化学学报, 2021, 79, 361.) |
[31] | Li, L.; Li, Z.; Yang, W.; Huang, Y.; Huang, G.; Guan, Q.; Dong, Y.; Lu, J.; Yu, S.-H.; Jiang, H.-L. Chem 2021, 7, 686. |
[32] | Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Adv. Mater. 2018, 30, 1703663. |
[33] | Guan, J.; Hu, Y.; Wang, Y.; Li, H.; Xu, Z.; Zhang, T.; Wu, P.; Zhang, S.; Xiao, G.; Ji, W.; Li, L.; Zhang, M.; Fan, Y.; Li, L.; Zheng, B.; Zhang, W.; Huang, W.; Huo, F. Adv. Mater. 2017, 29, 1606290. |
[34] | Feng, R.; Jia, Y.-Y.; Li, Z.-Y.; Chang, Z.; Bu, X.-H. Chem. Sci. 2018, 9, 950. |
[35] | Yang, Q.; Jiang, H.-L. Small Methods 2018, 2, 1800216. |
[36] | Zhang, K.; Xi, Z.; Wu, Z.; Lu, G.; Huang, X. ACS Sustainable Chem. Eng. 2021, 9, 12623. |
[37] | Dong, Y.; Li, W.-H.; Dong, Y.-B. J. Org. Chem. 2021, 86, 1818. |
[38] | Sun, R.; Liu, B.; Li, B.-G.; Jie, S. ChemCatChem 2016, 8, 3261. |
[39] | Chen, L.; Rangan, S.; Li, J.; Jiang, H.; Li, Y. Green Chem. 2014, 16, 3978. |
[40] | Jung, K. T.; Bell, A. T. J. Catal. 2001, 204, 339. |
[41] | Chen, L.; Chen, X.; Liu, H.; Bai, C.; Li, Y. J. Mater. Chem. A 2015, 3, 15259. |
[42] | Lv, D.-M.; Xu, Z.-N.; Peng, S.-Y.; Wang, Z.-Q.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Sci. Technol. 2015, 5, 3333. |
[43] | Tereshchenko, A.; Guda, A.; Polyakov, V.; Rusalev, Y.; Butova, V.; Soldatov, A. Analyst 2020, 145, 7534. |
[44] | Wang, C.; Jia, Y.; Zhang, Z.; Zhao, G.; Liu, Y.; Lu, Y. Appl. Surf. Sci. 2019, 478, 840. |
/
〈 |
|
〉 |