研究论文

全氢聚硅氮烷-氧化硅的转化过程研究

  • 王丹 ,
  • 郭香 ,
  • 李鹏飞 ,
  • 张昱临 ,
  • 徐彩虹 ,
  • 张宗波
展开
  • a 中国科学院化学研究所 中国科学院极端环境高分子材料重点实验室 北京 100190
    b 中国科学院大学 化学与化工学院 北京 100049
庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-31

  网络出版日期: 2022-04-18

基金资助

国防基础科研项目(JCKY2020203B019); 中国科学院青年创新促进会优秀会员项目资助.

Conversion Process of Perhydropolysilazane to Silica

  • Dan Wang ,
  • Xiang Guo ,
  • Pengfei Li ,
  • Yulin Zhang ,
  • Caihong Xu ,
  • Zongbo Zhang
Expand
  • a Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    b School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-31

  Online published: 2022-04-18

Supported by

National Defense Basic Scientific Research Program of China(JCKY2020203B019); Excellent Member of the Youth Innovation Promotion Association, Chinese Academy of Sciences(CAS)

摘要

利用全氢聚硅氮烷(PHPS)转化制备的氧化硅材料在存储芯片、柔性显示封装等领域展现出较高的应用价值. 本工作系统研究了PHPS在高温加热条件下的氧化硅形成过程, 考察了转化过程中化学组成和微观结构对体积收缩、折射率和力学性能的影响. 研究结果表明: 转化温度低于180 ℃时, PHPS的转化以Si—H和Si—N的水解缩合反应为主, 转化程度较低, 形成的是氧化硅为分散相、PHPS为连续相的海岛结构; 转化温度在180~300 ℃区间内, 转化以氧化反应为主, 氧化硅相逐渐生长, 形成双连续的相结构, 且在温度高于200 ℃时发生相反转, 氧化硅相成为连续相. 转化温度在300~600 ℃区间时, 氧化硅网络骨架基本形成, 在高温的作用下进一步致密化. PHPS转化样品的体积收缩、折光指数和力学性能与其转化程度和相分布有关.

本文引用格式

王丹 , 郭香 , 李鹏飞 , 张昱临 , 徐彩虹 , 张宗波 . 全氢聚硅氮烷-氧化硅的转化过程研究[J]. 化学学报, 2022 , 80(6) : 734 -740 . DOI: 10.6023/A21120621

Abstract

Perhydropolysilazane (PHPS) derived silica materials have received extensive attention due to their potential applications in fields of memory chip and flexible display encapsulation. However, the current understanding of PHPS conversion process is not deepened yet, which is unfavorable to further research. To clarify PHPS conversion process, this work systematically studied conversion mechanism from PHPS to silica, and investigated the influence of chemical composition and microstructure on volume shrinkage, refractive index and mechanical properties in the conversion process. The coating samples were prepared by hydrolysis and condensation reaction of PHPS under conversion condition of heat. Chemical composition and microstructure of the obtained samples were analyzed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive spectrometer and peak table mode of atomic force microscope. It is found that, when the conversion temperature is below 180 ℃, the conversion of PHPS is dominated by the hydrolysis and condensation reaction of Si—H and Si—N bonds, and its conversion degree is low. The formed samples show sea-island structure, which is composed of a dispersed silica phase and continuous PHPS phase. When the conversion temperature is in the range of 180~300 ℃, the transformation depends on oxidation reaction. It results in growth of silica phase, formation of bi-continuous phase, phase reverse between PHPS and silica phase with the temperature above 200 ℃, and formation of continuous silica phase. When the conversion temperature is in the range of 300~600 ℃, the silica network is basically formed, and it is densified by further treatment at higher temperature. The volume shrinkage, refractive index, and mechanical properties of PHPS converted samples depend on the conversion degree and phases’ distribution.

参考文献

[1]
Khodakarami, S.; Zhao, H.; Rabbi, K. F.; Miljkovic, N. ACS Appl. Mater. Interfaces 2021, 13, 4519.
[2]
Wu, Y. P.; Lei, X. Y.; Lu, Y. M.; Chen, H. N. CIESC Journal 2021, 72, 21. (in Chinese)
[2]
(吴延鹏, 雷晓宇, 陆禹名, 陈卉妮, 化工学报, 2021, 72, 21.)
[3]
Guo, J. Y.; Zhao, Y. M.; Li, W. J.; Yang, J. Y.; Wang, R. J.; Su, L. J. Mater. Rep. 2021, 35, 90. (in Chinese)
[3]
(郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军, 材料导报, 2021, 35, 90.)
[4]
He, T.; Yang, X. F.; Chen, Y. Z.; Tong, Z. H.; Wu, L. Z. Acta Chim. Sinica 2019, 77, 41. (in Chinese)
[4]
(何通, 杨晓峰, 陈玉哲, 佟振合, 吴骊珠, 化学学报, 2019, 77, 41.)
[5]
Wang, K. K.; He, J. H. Acta Chim. Sinica 2018, 76, 807. (in Chinese)
[5]
(王凯凯, 贺军辉, 化学学报, 2018, 76, 807.)
[6]
Guo, S.; Wang, Z.; Xu, Z.; Wang, S.; Wu, K.; Chen, S.; Zhang, Z.; Xu, C.; Qiu, W.; Li, L. Chin. Chem. Lett. 2017, 28, 2143.
[7]
Wang, X.; Tan, L. L.; Yang, Y. W. Acta Chim. Sinica 2016, 74, 303. (in Chinese)
[7]
(王鑫, 谭丽丽, 杨英威, 化学学报, 2016, 74, 303.)
[8]
Liu, D. L.; Lu, D. F.; Zhao, Q.; Chen, C.; Qi, Z. M. Acta Chim. Sinica 2015, 73, 41. (in Chinese)
[8]
(刘德龙, 逯丹凤, 赵乔, 陈晨, 祁志美, 化学学报, 2015, 73, 41.)
[9]
Ji, Y. J.; Zhang, B.; Zhang, K.; Xu, L.; Peng, H. G.; Wu, P. Acta Chim. Sinica 2013, 71, 371. (in Chinese)
[9]
(纪永军, 张斌, 张坤, 徐乐, 彭洪根, 吴鹏, 化学学报, 2013, 71, 371.)
[10]
Huang, Z. Y.; Zhang, L.; Liang, G. C. Acta Chim. Sinica 2012, 70, 235. (in Chinese)
[10]
(黄紫洋, 张岚, 梁广超, 化学学报, 2012, 70, 235.)
[11]
Borisova, D.; Möhwald, H.; Shchukin, D. G. ACS Nano 2011, 5, 1939.
[12]
Xu, L. G.; Li, X. Y.; He, J. H. Acta Chim. Sinica 2011, 69, 2648. (in Chinese)
[12]
(许利刚, 李晓禹, 贺军辉, 化学学报, 2011, 69, 2648.)
[13]
Mattox, D. M. Met. Finish. 2000, 98, 410.
[14]
Reichelt, K.; Jiang, X. Thin Solid Films 1990, 191, 91.
[15]
Böke, F.; Giner, I.; Keller, A.; Grundmeier, G.; Fischer, H. ACS Appl. Mater. Interfaces 2016, 8, 17805.
[16]
Mathur, S.; Shen, H.; Altmayer, J. Rev. Adv. Mater. Sci. 2007, 15, 16.
[17]
Jen, S.-H.; Bertrand, J. A.; George, S. M. J. Appl. Phys. 2011, 109, 084305.
[18]
George, S. M. Chem. Rev. 2010, 110, 111.
[19]
Zhao, R. T.; Han, T. H.; Sun, D. Y.; Shan, D.; Liu, Z. P.; Liang, F. X. Acta Chim. Sinica 2020, 78, 954. (in Chinese)
[19]
(赵若彤, 韩天昊, 孙大吟, 山丹, 刘正平, 梁福鑫, 化学学报, 2020, 78, 954.)
[20]
Xiong, B. T.; Zhu, Z. Y.; Wang, C. R.; Chen, B. X.; Luo, J. Y. Acta Chim. Sinica 2013, 71, 443. (in Chinese)
[20]
(熊必涛, 朱志艳, 王长荣, 陈宝信, 骆钧炎, 化学学报, 2013, 71, 443.)
[21]
Wang, X, W.; Wei, Q.; Hong, Z. F.; Li, Q. Y.; Nie, Z. R. Acta Chim. Sinica 2012, 70, 2529. (in Chinese)
[21]
(王学伟, 韦奇, 洪志发, 李群艳, 聂祚仁, 化学学报, 2012, 70, 2529.)
[22]
Zhang, Z. B.; Xiao, F. Y.; Luo, Y. M.; Xu, C. H. Paint. Coat. Ind. 2013, 43, 74. (in Chinese)
[22]
(张宗波, 肖凤艳, 罗永明, 徐彩虹, 涂料工业, 2013, 43, 74.)
[23]
Zhang, Z. B.; Xiao, F. Y.; Luo, Y. M.; Xu, C. H. Fine and Specialty Chemicals 2013, 21, 25. (in Chinese)
[23]
(张宗波, 肖凤艳, 罗永明, 徐彩虹, 精细与专用化学品, 2013, 21, 25.)
[24]
Kozuka, H.; Nakajima, K.; Uchiyama, H. ACS Appl. Mater. Interfaces 2013, 5, 8329.
[25]
Li, P.; Wang, D.; Zhang, Z.; Guo, Y.; Jiang, L.; Xu, C. ACS Appl. Mater. Interfaces 2020, 12, 56186.
[26]
Wang, Z.; Guo, S.; Liang, Q.; Dong, H.; Li, L.; Zhang, Z.; Xing, F.; Hu, W. Sci. China Mater. 2018, 61, 1237.
[27]
Wang, D.; Zhang, Z. B.; Wang, X. F.; Xue, J. X.; Xu, C. H. Micronanoelectron. Technol. 2017, 54, 514. (in Chinese)
[27]
(王丹, 张宗波, 王晓峰, 薛锦馨, 徐彩虹, 微纳电子技术, 2017, 54, 514.)
[28]
Seul, H. J.; Kim, H. G.; Park, M. Y.; Jeong, J. K. J. Mater. Chem. C 2016, 4, 10486.
[29]
Jeong, Y.; Pearson, C.; Kim, H. G.; Park, M. Y.; Kim, H.; Do, L. M.; Petty, M. C. RSC Adv. 2015, 5, 36083.
[30]
Channa, I. A.; Distler, A.; Zaiser, M.; Brabec, C. J.; Egelhaaf, H. J. Adv. Energy Mater. 2019, 9, 1900598.
[31]
Sun, L.; Uemura, K.; Takahashi, T.; Yoshida, T.; Suzuri, Y. ACS Appl. Mater. Interfaces 2019, 11, 43425.
[32]
Zhang, Z. B.; Wang, D.; Xu, C. H. Paint. Coat. Ind. 2016, 46, 82.. (in Chinese)
[32]
(张宗波, 王丹, 徐彩虹, 涂料工业, 2016, 46, 82.)
[33]
Morlier, A.; Cros, S.; Garandet, J.-P.; Alberola, N. Sol. Energy Mater. Sol. Cells. 2013, 115, 93.
[34]
Matsuo, H.; Yamada, K. Convertech. 1995, 23, 25.
[35]
Kamiya, K.; Tange, T.; Hashimoto, T.; Nasu, H.; Shimizu, Y. Res. Rep. Fac. Eng. 2001, 26, 23.
[36]
Bauer, F.; Decker, U.; Dierdorf, A.; Ernst, H.; Heller, R.; Liebe, H.; Mehnert, R. Prog. Org. Coat. 2005, 53, 183.
[37]
Ohishi, T. J. Non·Cryst. Solids 2003, 330, 248.
[38]
Kozuka, H.; Fujita, M.; Tamoto, S. J. Sol-Gel Sci. Technol. 2008, 48, 148.
[39]
Kubo, T.; Kozuka, H. J. Ceram. Soc. Jpn. 2006, 114, 517.
[40]
Kubo, T.; Tadaoka, E.; Kozuka, H. J. Sol-Gel Sci. Technol. 2004, 31, 257.
[41]
Kubo, T.; Tadaoka, E.; Kozuka, H. J. Mater. Res. 2004, 19, 635.
[42]
Tanaka, T.; Hanaoka, K.; Yamaguchi, M.; Shindo, T.; Kunzelmann, K.-H.; Teranaka, T. Dent. Mater. J. 2011, 30, 170.
[43]
Seifert, M.; Motz, G. J. Eur. Ceram. Soc. 2016, 36, 3601.
[44]
Je, S. Y.; Son, B. G.; Kim, H. G.; Park, M. Y.; Do, L. M.; Choi, R.; Jeong, J. K. ACS Appl. Mater. Interfaces 2014, 6, 18693.
[45]
Lebrun, J. J.; Porte, H. US 4,689,252, 1987.
[46]
Nakajima, K.; Uchiyama, H.; Kitano, T.; Kozuka, H. J. Am. Ceram. Soc. 2013, 96, 2806.
[47]
Zhang, Z.; Shao, Z.; Luo, Y.; An, P.; Zhang, M.; Xu, C. Polym. Int. 2015, 64, 971.
[48]
Dargère, N.; Bounor-Legaré, V.; Boisson, F.; Cassagnau, P.; Martin, G.; Sonntag, P.; Garois, N. J. Sol-Gel Sci. Technol. 2012, 62, 389.
[49]
Morlier, A.; Cros, S.; Garandet, J.-P.; Alberola, N. Thin Solid Films. 2012, 524, 62.
[50]
Awazu, K.; Kawazoe, H. J. Appl. Phys. 2003, 94, 6243.
[51]
Günthner, M.; Wang, K.; Bordia, R. K.; Motz, G. J. Eur. Ceram. Soc. 2012, 32, 1883.
[52]
Blankenburg, L.; Schrödner, M. Surf. Coat. Technol. 2015, 275, 193.
[53]
Miller, K. S.; Krochta, J. M. Trends Food Sci. Technol. 1997, 8, 228.
[54]
Nikitin, T.; Velagapudi, R.; Sainio, J.; Lahtinen, J.; Räsänen, M.; Novikov, S.; Khriachtchev, L. J. Appl. Phys. 2012, 112, 094316.
[55]
Jung, S.-H.; Lee, J.-S.; Oh, J.-H.; Moon, S.-W.; Kim, S.-D. Jpn. J. Appl. Phys. 2010, 49, 111505.
[56]
Guo, C. L. M.S. Thesis, Zhejiang University, Hangzhou, 2014. (in Chinese)
[56]
(郭春林, 硕士论文, 浙江大学, 杭州, 2014.)
[57]
Jiang, Y. G.; Wang, L. S.; Liu, H. S.; Liu, D. D.; Jiang, C. H.; Yang, Y. P.; Ji, Y. Q. Infrared and Laser Engineering 2014, 43, 3334. (in Chinese)
[57]
(姜玉刚, 王利栓, 刘华松, 刘丹丹, 姜承慧, 羊亚平, 季一勤, 红外与激光工程, 2014, 43, 3334.)
[58]
Li, P. M.S. Thesis, Xi’an Technological University, Xi’an, 2015. (in Chinese)
[58]
(李鹏, 硕士论文, 西安工业大学, 西安, 2015.)
[59]
Chowdhury, S. C.; Haque, B. Z.; Gillespie, J. W. J. Mater. Sci. 2016, 51, 10139.
[60]
Oliver, W. C.; Pharr, G. M. J. Mater. Res. 1992, 7, 1564.
文章导航

/