综述

有机太阳能电池性能衰减机理研究进展

  • 刘彦甫 ,
  • 李世麟 ,
  • 荆亚楠 ,
  • 肖林格 ,
  • 周惠琼
展开
  • a 郑州大学化学学院 郑州 450001
    b 国家纳米科学中心 中国科学院纳米系统与多级次制造重点实验室 北京 100190
    c 北京航空航天大学化学学院 北京 100191

刘彦甫, 郑州大学化学学院2019级硕士研究生, 现在国家纳米科学中心联合培养, 主要研究方向为有机太阳能电池性能衰减分析和稳定性提高.

周惠琼, 博士生导师, 国家纳米科学中心研究员. 于武汉大学获得学士和硕士学位, 国家纳米科学中心获得博士学位. 之后加入加州大学圣塔芭芭拉分校Heeger教授课题组进行博士后研究. 2015年入选中科院人才项目加入国家纳米科学中心, 2019年获得国家自然科学基金委“优秀青年科学基金”资助. 致力于溶液法光伏器件的研究, 在有机和钙钛矿太阳能电池方面有着丰富的经验. 迄今为止发表文章近百篇. 目前为Sol. RRL杂志Editorial Advisory Board成员, 《物理化学学报》、InfoMat以及NanoResearch等杂志青年编委.

收稿日期: 2022-02-21

  网络出版日期: 2022-04-21

基金资助

国家重点研发计划项目(2017YFA0206600); 国家自然科学基金(21922505); 中国科学院战略性先导科技专项(B类)(XDB36000000)

Research Progress in Degradation Mechanism of Organic Solar Cells

  • Yanfu Liu ,
  • Shilin Li ,
  • Yanan Jing ,
  • Linge Xiao ,
  • Huiqiong Zhou
Expand
  • a College of Chemistry, Zhengzhou University, Zhengzhou 450001
    b CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology,Beijing 100190
    c School of Chemistry, Beihang University, Beijing 100191

Received date: 2022-02-21

  Online published: 2022-04-21

Supported by

National Key Research and Development Program of China(2017YFA0206600); National Natural Science Foundation of China(21922505); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000)

摘要

近年来随着非富勒烯Y系列明星分子受体的出现, 单结有机太阳能电池的光电转换效率已经突破19%, 但是器件在运行条件下缺乏良好的稳定性, 严重制约了其商业化发展. 因此越来越多的研究聚焦于造成有机太阳能电池性能衰减的原因以及如何提高有机太阳能电池的稳定性. 由于有机太阳能电池复杂的器件结构、不尽相同的活性层材料以及在稳定性研究中条件的差异, 造成了对有机太阳能电池器件衰减研究的困难. 为了更全面地了解有机太阳能电池的衰减过程, 对近些年有机太阳能电池器件衰减过程的研究成果进行综述, 总结了由于给受体材料化学分解、活性层形貌变化、传输层和电极腐蚀以及界面反应等原因造成的器件性能衰减, 并介绍了近些年关于提高器件稳定性的一些策略, 最后对有机太阳能电池的未来发展进行了展望.

本文引用格式

刘彦甫 , 李世麟 , 荆亚楠 , 肖林格 , 周惠琼 . 有机太阳能电池性能衰减机理研究进展[J]. 化学学报, 2022 , 80(7) : 993 -1009 . DOI: 10.6023/A22020081

Abstract

During the last several years, with the emergence of non-fullerene Y-series star molecular acceptors, the power conversion efficiency of single-junction organic solar cells has exceeded 19%. However, the relatively poor stability of the devices under different operating conditions seriously restricts its commercialization. Therefore, more and more researches are focused on the causes of devices degradation of organic solar cells and how to improve the stability of organic solar cells (OSCs). OSCs have complex active layer materials and different device structure. It is still not clear about the performance and decay process of organic solar cells. Most of the previous reviews on OSC stability are based on external factors such as moisture, oxygen, light and heat, and lack of explanation of device degradation process. In this review, the literatures of OSCs device degradation in recent years are reviewed and several factors that cause performance degradation in OSCs devices are summarized. Firstly, the device performance attenuation caused by the change of active layer, the photooxidation reaction caused by chemical molecule changes, photochemical reaction, and device aging process, and the morphological changes in active layers caused by photothermal stresses and their effects on device performance are reviewed. Then, the influence of the changes at the interface and transporting layer degradation is introduced. Finally, the multi-directional strategies for improving the stability of OSCs are stated and how to improve the stability of organic solar cells is suggested.

参考文献

[1]
Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Nat. Rev. Mater. 2018, 3, 18003.
[2]
Bi, P.; Zhang, S.; Wang, J.; Ren, J.; Hou, J. Chin. J. Chem. 2021, 39, 2607.
[3]
Li, T.; Zhan, X. Acta Chim. Sinica 2021, 79, 257. (in Chinese)
[3]
(李腾飞, 占肖卫, 化学学报, 2021, 79, 257.)
[4]
Burlingame, Q.; Ball, M.; Loo, Y.-L. Nat. Energy 2020, 5, 947.
[5]
Ren, J.; Sun, M. Chin. J. Org. Chem. 2016, 36, 2284. (in Chinese)
[5]
(任静, 孙明亮, 有机化学, 2016, 36, 2284.)
[6]
Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[7]
Yu, G.; Heeger, A. J. J. Appl. Phys. 1995, 78, 4510.
[8]
Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010, 22, E135.
[9]
Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. Energy Environ. Sci. 2012, 5, 7943.
[10]
Hwang, Y.-J.; Courtright, B. A. E.; Ferreira, A. S.; Tolbert, S. H.; Jenekhe, S. A. Adv. Mater. 2015, 27, 4578.
[11]
Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.
[12]
Liao, S.-H.; Jhuo, H.-J.; Cheng, Y.-S.; Chen, S.-A. Adv. Mater. 2013, 25, 4766.
[13]
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170.
[14]
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Joule 2019, 3, 1140.
[15]
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. Sci. Bull. 2020, 65, 272.
[16]
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Nat. Energy 2021, 6, 605.
[17]
Meng, H.; Liao, C.; Deng, M.; Xu, X.; Yu, L.; Peng, Q. Angew. Chem., Int. Ed. 2021, 60, 22554.
[18]
Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Adv. Mater. 2021, 33, 2102420.
[19]
Wang, W.; Wang, J.; Zheng, Z.; Hou, J. Acta Chim. Sinica 2020, 78, 382. (in Chinese)
[19]
(王文璇, 王建邱, 郑众, 侯剑辉, 化学学报, 2020, 78, 382.)
[20]
Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Joule 2022, 6, 171.
[21]
Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganäs, O.; Gao, F.; Hou, J. Nat. Energy 2019, 4, 768.
[22]
Cheng, P.; Zhan, X. Chem. Soc. Rev. 2016, 45, 2544.
[23]
Lee, H. K. H.; Telford, A. M.; Röhr, J. A.; Wyatt, M. F.; Rice, B.; Wu, J.; de Castro Maciel, A.; Tuladhar, S. M.; Speller, E.; McGettrick, J.; Searle, J. R.; Pont, S.; Watson, T.; Kirchartz, T.; Durrant, J. R.; Tsoi, W. C.; Nelson, J.; Li, Z. Energy Environ. Sci. 2018, 11, 417.
[24]
Reese, M. O.; Nardes, A. M.; Rupert, B. L.; Larsen, R. E.; Olson, D. C.; Lloyd, M. T.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G.; Kopidakis, N. Adv. Funct. Mater. 2010, 20, 3476.
[25]
Perthué, A.; Gorisse, T.; Silva, H. S.; Lombard, C.; Bégué, D.; Hudhomme, P.; Pépin-Donat, B.; Rivaton, A.; Wantz, G. J. Mater. Res. 2018, 33, 1868.
[26]
Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C. J. Joule 2019, 3, 215.
[27]
Burlingame, Q.; Huang, X.; Liu, X.; Jeong, C.; Coburn, C.; Forrest, S. R. Nature 2019, 573, 394.
[28]
Mateker, W. R.; Sachs-Quintana, I. T.; Burkhard, G. F.; Cheacharoen, R.; McGehee, M. D. Chem. Mater. 2015, 27, 404.
[29]
Xu, X.; Xiao, J.; Zhang, G.; Wei, L.; Jiao, X.; Yip, H.-L.; Cao, Y. Sci. Bull. 2020, 65, 208.
[30]
Reese, M. O.; Gevorgyan, S. A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; Elschner, A.; Haillant, O.; Currier, T. R.; Shrotriya, V.; Hermenau, M.; Riede, M. R.; Kirov, K.; Trimmel, G.; Rath, T.; Inganäs, O.; Zhang, F.; Andersson, M.; Tvingstedt, K.; Lira-Cantu, M.; Laird, D.; McGuiness, C.; Gowrisanker, S.; Pannone, M.; Xiao, M.; Hauch, J.; Steim, R.; DeLongchamp, D. M.; Rösch, R.; Hoppe, H.; Espinosa, N.; Urbina, A.; Yaman-Uzunoglu, G.; Bonekamp, J.-B.; van Breemen, A. J. J. M.; Girotto, C.; Voroshazi, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2011, 95, 1253.
[31]
Wang, Y.; Lee, J.; Hou, X.; Labanti, C.; Yan, J.; Mazzolini, E.; Parhar, A.; Nelson, J.; Kim, J. S.; Li, Z. Adv. Energy Mater. 2020, 11, 2003002.
[32]
Duan, L.; Uddin, A. Adv. Sci. (Weinh) 2020, 7, 1903259.
[33]
Xu, X.; Li, D.; Yuan, J.; Zhou, Y.; Zou, Y. EnergyChem 2021, 3, 100046.
[34]
Guo, J.; Wu, Y.; Sun, R.; Wang, W.; Guo, J.; Wu, Q.; Tang, X.; Sun, C.; Luo, Z.; Chang, K.; Zhang, Z.; Yuan, J.; Li, T.; Tang, W.; Zhou, E.; Xiao, Z.; Ding, L.; Zou, Y.; Zhan, X.; Yang, C.; Li, Z.; Brabec, C. J.; Li, Y.; Min, J. J. Mater. Chem. A 2019, 7, 25088.
[35]
Manceau, M.; Gaume, J.; Rivaton, A.; Gardette, J.-L.; Monier, G.; Bideux, L. Thin Solid Films 2010, 518, 7113.
[36]
Zhou, Z.; Xu, S.; Song, J.; Jin, Y.; Yue, Q.; Qian, Y.; Liu, F.; Zhang, F.; Zhu, X. Nat. Energy 2018, 3, 952.
[37]
Zhao, Q.; Xiao, Z.; Qu, J.; Liu, L.; Richter, H.; Chen, W.; Han, L.; Wang, M.; Zheng, J.; Xie, Z.; Ding, L.; He, F. ACS Energy Lett. 2019, 4, 1106.
[38]
Fu, H.; Li, C.; Bi, P.; Hao, X.; Liu, F.; Li, Y.; Wang, Z.; Sun, Y. Adv. Funct. Mater. 2019, 29, 1807006.
[39]
Xiao, Q.; Yang, S.; Wang, R.; Zhang, Y.; Zhang, H.; Zhou, H.; Li, Z. Dyes Pigm. 2018, 154, 137.
[40]
Bin, H. J.; Li, Y. F. Acta Polym. Sin. 2017, 9, 1444.
[41]
Wang, J.; Zhan, X. Acc. Chem. Res. 2021, 54, 132.
[42]
Watts, K. E.; Nguyen, T.; Tremolet de Villers, B. J.; Neelamraju, B.; Anderson, M. A.; Braunecker, W. A.; Ferguson, A. J.; Larsen, R. E.; Larson, B. W.; Owczarczyk, Z. R.; Pfeilsticker, J. R.; Pemberton, J. E.; Ratcliff, E. L. J. Mater. Chem. A 2019, 7, 19984.
[43]
Mateker, W. R.; Heumueller, T.; Cheacharoen, R.; Sachs-Quintana, I. T.; McGehee, M. D.; Warnan, J.; Beaujuge, P. M.; Liu, X.; Bazan, G. C. Chem. Mater. 2015, 27, 6345.
[44]
Luke, J.; Speller, E. M.; Wadsworth, A.; Wyatt, M. F.; Dimitrov, S.; Lee, H. K. H.; Li, Z.; Tsoi, W. C.; McCulloch, I.; Bagnis, D.; Durrant, J. R.; Kim, J. S. Adv. Energy Mater. 2019, 9, 1803755.
[45]
Tournebize, A.; Bussière, P.-O.; Rivaton, A.; Gardette, J.-L.; Medlej, H.; Hiorns, R. C.; Dagron-Lartigau, C.; Krebs, F. C.; Norrman, K. Chem. Mater. 2013, 25, 4522.
[46]
Mizukado, J.; Sato, H.; Chen, L.; Suzuki, Y.; Yamane, S.; Aoyama, Y.; Suda, H. J. Mass Spectrom. 2015, 50, 1006.
[47]
Kettle, J.; Ding, Z.; Horie, M.; Smith, G. C. Org. Electron. 2016, 39, 222.
[48]
Löhrer, F. C.; Senfter, C.; Schaffer, C. J.; Schlipf, J.; Moseguí González, D.; Zhang, P.; Roth, S. V.; Müller-Buschbaum, P. Adv. Photonics Res. 2020, 1, 2000047.
[49]
Hoke, E. T.; Sachs-Quintana, I. T.; Lloyd, M. T.; Kauvar, I.; Mateker, W. R.; Nardes, A. M.; Peters, C. H.; Kopidakis, N.; McGehee, M. D. Adv. Energy Mater. 2012, 2, 1351.
[50]
Park, S.; Son, H. J. J. Mater. Chem. A. 2019, 7, 25830.
[51]
Ohta, H.; Koizumi, H. Polym. Bull. 2016, 74, 2319.
[52]
Bertho, S.; Haeldermans, I.; Swinnen, A.; Moons, W.; Martens, T.; Lutsen, L.; Vanderzande, D.; Manca, J.; Senes, A.; Bonfiglio, A. Sol. Energy Mater. Sol. Cells 2007, 91, 385.
[53]
Speller, E. M.; Clarke, A. J.; Aristidou, N.; Wyatt, M. F.; Francas, L.; Fish, G.; Cha, H.; Lee, H. K. H.; Luke, J.; Wadsworth, A.; Evans, A. D.; McCulloch, I.; Kim, J. S.; Haque, S. A.; Durrant, J. R.; Dimitrov, S. D.; Tsoi, W. C.; Li, Z. ACS Energy Lett. 2019, 4, 846.
[54]
Peters, C. H.; Sachs-Quintana, I. T.; Kastrop, J. P.; Beaupré, S.; Leclerc, M.; McGehee, M. D. Adv. Energy Mater. 2011, 1, 491.
[55]
Peters, C. H.; Sachs-Quintana, I. T.; Mateker, W. R.; Heumueller, T.; Rivnay, J.; Noriega, R.; Beiley, Z. M.; Hoke, E. T.; Salleo, A.; McGehee, M. D. Adv. Mater. 2012, 24, 663.
[56]
Zhou, P.; Dong, Z.-H.; Rao, A. M.; Eklund, P. C. Chem. Phys. Lett. 1993, 211, 337.
[57]
Eklund, P. C.; Rao, A. M.; Zhou, P.; Wang, Y.; Holden, J. M. Thin Solid Films 1995, 257, 185.
[58]
Song, J.; Tyagi, P.; An, K.; Park, M.; Jung, H.; Ahn, N.; Choi, M.; Lee, D.; Lee, C. Org. Electron. 2020, 81, 105686.
[59]
Wang, Y.; Holden, J. M.; Dong, Z.-H.; Bi, X.-X.; Eklund, P. C. Chem. Phys. Lett. 1993, 211, 341.
[60]
Fraga Domínguez, I.; Distler, A.; Lüer, L. Adv. Energy Mater. 2017, 7, 1601320.
[61]
Distler, A.; Sauermann, T.; Egelhaaf, H.-J.; Rodman, S.; Waller, D.; Cheon, K.-S.; Lee, M.; Guldi, D. M. Adv. Energy Mater. 2014, 4, 1300693.
[62]
Yan, L.; Yi, J.; Chen, Q.; Dou, J.; Yang, Y.; Liu, X.; Chen, L.; Ma, C.-Q. J. Mater. Chem. A 2017, 5, 10010.
[63]
Heumueller, T.; Mateker, W. R.; Distler, A.; Fritze, U. F.; Cheacharoen, R.; Nguyen, W. H.; Biele, M.; Salvador, M.; von Delius, M.; Egelhaaf, H.-J.; McGehee, M. D.; Brabec, C. J. Energy Environ. Sci. 2016, 9, 247.
[64]
Wang, J.; Enevold, J.; Edman, L. Adv. Funct. Mater. 2013, 23, 3220.
[65]
Cha, H.; Wu, J.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.; Wyatt, M. F.; Baran, D.; Kim, J. S.; McCulloch, I.; Durrant, J. R. Adv. Mater. 2017, 29, 1701156.
[66]
Wang, N.; Tong, X.; Burlingame, Q.; Yu, J.; Forrest, S. R. Sol. Energy Mater. Sol. Cells 2014, 125, 170.
[67]
Li, Z.; Shan, J.; Yan, L.; Gu, H.; Lin, Y.; Tan, H.; Ma, C. Q. ACS Appl. Mater. Interfaces 2020, 12, 15472.
[68]
Wu, G.; Li, X.; Zhou, J.; Zhang, J.; Zhang, X.; Leng, X.; Wang, P.; Chen, M.; Zhang, D.; Zhao, K.; Liu, S. F.; Zhou, H.; Zhang, Y. Adv. Mater. 2019, 31, e1903889.
[69]
Yan, L.; Wang, Y.; Wei, J.; Ji, G.; Gu, H.; Li, Z.; Zhang, J.; Luo, Q.; Wang, Z.; Liu, X.; Xu, B.; Wei, Z.; Ma, C.-Q. J. Mater. Chem. A 2019, 7, 7099.
[70]
Li, Z.; Yan, L.; Shan, J.; Gu, H.; Lin, Y.; Wang, Y.; Tan, H.; Ma, C.-Q. Energy Technol. 2020, 8, 2000266.
[71]
Wong, H. C.; Li, Z.; Tan, C. H.; Zhong, H.; Huang, Z.; Bronstein, H.; McCulloch, I.; Cabral, J. T.; Durrant, J. R. ACS Nano. 2014, 8, 1297.
[72]
Li, Z.; Wong, H. C.; Huang, Z.; Zhong, H.; Tan, C. H.; Tsoi, W. C.; Kim, J. S.; Durrant, J. R.; Cabral, J. T. Nat. Commun. 2013, 4, 2227.
[73]
Piersimoni, F.; Degutis, G.; Bertho, S.; Vandewal, K.; Spoltore, D.; Vangerven, T.; Drijkoningen, J.; Van Bael, M. K.; Hardy, A.; D'Haen, J.; Maes, W.; Vanderzande, D.; Nesladek, M.; Manca, J. J. Polym. Sci., Part B : Polym. Phys. 2013, 51, 1209.
[74]
Pont, S.; Osella, S.; Smith, A.; Marsh, A. V.; Li, Z.; Beljonne, D.; Cabral, J. T.; Durrant, J. R. Chem. Mater. 2019, 31, 6076.
[75]
Yamilova, O. R.; Martynov, I. V.; Brandvold, A. S.; Klimovich, I. V.; Balzer, A. H.; Akkuratov, A. V.; Kusnetsov, I. E.; Stingelin, N.; Troshin, P. A. Adv. Energy Mater. 2020, 10, 1903163.
[76]
Zhao, Y.; Wu, Z.; Liu, X.; Zhong, Z.; Zhu, R.; Yu, J. J. Mater. Chem. C 2021, 9, 13972.
[77]
Clarke, A. J.; Luke, J.; Meitzner, R.; Wu, J.; Wang, Y.; Lee, H. K. H.; Speller, E. M.; Bristow, H.; Cha, H.; Newman, M. J.; Hooper, K.; Evans, A.; Gao, F.; Hoppe, H.; McCulloch, I.; Schubert, U. S.; Watson, T. M.; Durrant, J. R.; Tsoi, W. C.; Kim, J.-S.; Li, Z. Cell Rep. Phys. Sci. 2021, 2, 100498.
[78]
Ciammaruchi, L.; Zapata-Arteaga, O.; Gutiérrez-Fernández, E.; Martin, J.; Campoy-Quiles, M. Mater. Adv. 2020, 1, 2846.
[79]
Upama, M. B.; Wright, M.; Puthen-Veettil, B.; Elumalai, N. K.; Mahmud, M. A.; Wang, D.; Chan, K. H.; Xu, C.; Haque, F.; Uddin, A. RSC Adv. 2016, 6, 103899.
[80]
Upama, M. B.; Wright, M.; Mahmud, M. A.; Elumalai, N. K.; Mahboubi Soufiani, A.; Wang, D.; Xu, C.; Uddin, A. Nanoscale 2017, 9, 18788.
[81]
Wang, Y.; Jafari, M. J.; Wang, N.; Qian, D.; Zhang, F.; Ederth, T.; Moons, E.; Wang, J.; Inganäs, O.; Huang, W.; Gao, F. J. Mater. Chem. A 2018, 6, 11884.
[82]
Weu, A.; Kress, J. A.; Paulus, F.; Becker-Koch, D.; Lami, V.; Bakulin, A. A.; Vaynzof, Y. ACS Appl. Energy Mater. 2019, 2, 1943.
[83]
Liao, H.-H.; Yang, C.-M.; Liu, C.-C.; Horng, S.-F.; Meng, H.-F.; Shy, J.-T. J. Appl. Phys. 2008, 103.
[84]
Kim, W.; Kim, J. K.; Kim, E.; Ahn, T. K.; Wang, D. H.; Park, J. H. J. Phys. Chem. C 2015, 119, 5954.
[85]
Doumon, N. Y.; Wang, G.; Qiu, X.; Minnaard, A. J.; Chiechi, R. C.; Koster, L. J. A. Sci. Rep. 2019, 9, 4350.
[86]
Classen, A.; Heumueller, T.; Wabra, I.; Gerner, J.; He, Y.; Einsiedler, L.; Li, N.; Matt, G. J.; Osvet, A.; Du, X.; Hirsch, A.; Brabec, C. J. Adv. Energy Mater. 2019, 9, 1902124.
[87]
Tremolet de Villers, B. J.; O’Hara, K. A.; Ostrowski, D. P.; Biddle, P. H.; Shaheen, S. E.; Chabinyc, M. L.; Olson, D. C.; Kopidakis, N. Chem. Mater. 2016, 28, 876.
[88]
Xiao, Z.; Yuan, Y.; Yang, B.; VanDerslice, J.; Chen, J.; Dyck, O.; Duscher, G.; Huang, J. Adv. Mater. 2014, 26, 3068.
[89]
Huang, W.; Gann, E.; Xu, Z.-Q.; Thomsen, L.; Cheng, Y.-B.; McNeill, C. R. J. Mater. Chem. A 2015, 3, 16313.
[90]
Zhao, F.; Wang, C.; Zhan, X. Adv. Energy Mater. 2018, 8, 1703147.
[91]
Liang, Z.; Li, M.; Wang, Q.; Qin, Y.; Stuard, S. J.; Peng, Z.; Deng, Y.; Ade, H.; Ye, L.; Geng, Y. Joule 2020, 4, 1278.
[92]
Ghasemi, M.; Balar, N.; Peng, Z.; Hu, H.; Qin, Y.; Kim, T.; Rech, J. J.; Bidwell, M.; Mask, W.; McCulloch, I.; You, W.; Amassian, A.; Risko, C.; O'Connor, B. T.; Ade, H. Nat. Mater. 2021, 20, 525.
[93]
Xiao, J.; Ren, M.; Zhang, G.; Wang, J.; Zhang, D.; Liu, L.; Li, N.; Brabec, C. J.; Yip, H.-L.; Cao, Y. Sol. RRL 2019, 3, 1900077.
[94]
Jo, J.; Kim, S.-S.; Na, S.-I.; Yu, B.-K.; Kim, D.-Y. Adv. Funct. Mater. 2009, 19, 866.
[95]
Li, W.; Chen, M.; Zhang, Z.; Cai, J.; Zhang, H.; Gurney, R. S.; Liu, D.; Yu, J.; Tang, W.; Wang, T. Adv. Funct. Mater. 2018, 29, 1807662.
[96]
Yang, D.; Lohrer, F. C.; Korstgens, V.; Schreiber, A.; Cao, B.; Bernstorff, S.; Muller-Buschbaum, P. Adv. Sci. 2020, 7, 2001117.
[97]
Cheng, P.; Yan, C.; Lau, T. K.; Mai, J.; Lu, X.; Zhan, X. Adv. Mater. 2016, 28, 5822.
[98]
Hu, H.; Ghasemi, M.; Peng, Z.; Zhang, J.; Rech, J. J.; You, W.; Yan, H.; Ade, H. Adv. Mater. 2020, 32, 2005348.
[99]
Wang, Y.; Lan, W.; Li, N.; Lan, Z.; Li, Z.; Jia, J.; Zhu, F. Adv. Energy Mater. 2019, 9, 1900157.
[100]
Zhu, Y.; Gadisa, A.; Peng, Z.; Ghasemi, M.; Ye, L.; Xu, Z.; Zhao, S.; Ade, H. Adv. Energy Mater. 2019, 9, 1900376.
[101]
Kim, M.; Lee, J.; Jo, S. B.; Sin, D. H.; Ko, H.; Lee, H.; Lee, S. G.; Cho, K. J. Mater. Chem. A 2016, 4, 15522.
[102]
Cheng, H. W.; Raghunath, P.; Wang, K. L.; Cheng, P.; Haung, T.; Wu, Q.; Yuan, J.; Lin, Y. C.; Wang, H. C.; Zou, Y.; Wang, Z. K.; Lin, M. C.; Wei, K. H.; Yang, Y. Nano Lett. 2020, 20, 715.
[103]
Liu, H.; Liu, Z. X.; Wang, S.; Huang, J.; Ju, H.; Chen, Q.; Yu, J.; Chen, H.; Li, C. Z. Adv. Energy Mater. 2019, 9, 1900887.
[104]
Kettle, J.; Waters, H.; Ding, Z.; Horie, M.; Smith, G. C. Sol. Energy Mater. Sol. Cells 2015, 141, 139.
[105]
Heumueller, T.; Mateker, W. R.; Sachs-Quintana, I. T.; Vandewal, K.; Bartelt, J. A.; Burke, T. M.; Ameri, T.; Brabec, C. J.; McGehee, M. D. Energy Environ. Sci. 2014, 7, 2974.
[106]
Soon, Y. W.; Shoaee, S.; Ashraf, R. S.; Bronstein, H.; Schroeder, B. C.; Zhang, W.; Fei, Z.; Heeney, M.; McCulloch, I.; Durrant, J. R. Adv. Funct. Mater. 2014, 24, 1474.
[107]
de Jong, M. P.; van Ijzendoorn, L. J.; de Voigt, M. J. A. Appl. Phys. Lett. 2000, 77, 2255.
[108]
Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R. Sol. Energy Mater. Sol. Cells 2006, 90, 3520.
[109]
Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C. Appl. Phys. Lett. 2002, 80, 2788.
[110]
Sharma, A.; Andersson, G.; Lewis, D. A. Phys. Chem. Chem. Phys. 2011, 13, 4381.
[111]
Rafique, S.; Abdullah, S. M.; Sulaiman, K.; Iwamoto, M. Org. Electron. 2017, 40, 65.
[112]
Ecker, B.; Nolasco, J. C.; Pallarés, J.; Marsal, L. F.; Posdorfer, J.; Parisi, J.; von Hauff, E. Adv. Funct. Mater. 2011, 21, 2705.
[113]
Son, H. J.; Park, H.-K.; Moon, J. Y.; Ju, B.-K.; Kim, S. H. Sustainable Energy Fuels 2020, 4, 1974.
[114]
Norrman, K.; Madsen, M. V.; Gevorgyan, S. A.; Krebs, F. C. J. Am. Chem. Soc. 2010, 132, 16883.
[115]
Parnell, A. J.; Cadby, A. J.; Dunbar, A. D. F.; Roberts, G. L.; Plumridge, A.; Dalgliesh, R. M.; Skoda, M. W. A.; Jones, R. A. L. J. Polym. Sci., Part B : Polym. Phys. 2016, 54, 141.
[116]
Hermenau, M.; Riede, M.; Leo, K.; Gevorgyan, S. A.; Krebs, F. C.; Norrman, K. Sol. Energy Mater. Sol. Cells. 2011, 95, 1268.
[117]
Norrman, K.; Gevorgyan, S. A.; Krebs, F. C. ACS Appl. Mater. Interfaces 2009, 1, 102.
[118]
Huang, J.; Tang, H.; Yan, C.; Li, G. Cell Rep. Phys. Sci. 2021, 2, 100292.
[119]
Zhu, X.; Hu, L.; Wang, W.; Jiang, X.; Hu, L.; Zhou, Y. ACS Appl. Energy Mater. 2019, 2, 7602.
[120]
Zhang, Q.-Q.; Li, Y.; Wang, D.; Chen, Z.; Li, Y.; Li, S.; Zhu, H.; Lu, X.; Chen, H.; Li, C.-Z. Bull. Chem. Soc. Jpn. 2021, 94, 183.
[121]
Hu, L.; Liu, Y.; Mao, L.; Xiong, S.; Sun, L.; Zhao, N.; Qin, F.; Jiang, Y.; Zhou, Y. J. Mater. Chem. A 2018, 6, 2273.
[122]
Kyeong, M.; Lee, J.; Daboczi, M.; Stewart, K.; Yao, H.; Cha, H.; Luke, J.; Lee, K.; Durrant, J. R.; Kim, J.-S.; Hong, S. J. Mater. Chem. A 2021, 9, 13506.
[123]
Voroshazi, E.; Uytterhoeven, G.; Cnops, K.; Conard, T.; Favia, P.; Bender, H.; Muller, R.; Cheyns, D. ACS Appl. Mater. Interfaces 2015, 7, 618.
[124]
Gu, H.; Yan, L.; Saxena, S.; Shi, X.; Zhang, X.; Li, Z.; Luo, Q.; Zhou, H.; Yang, Y.; Liu, X.; Wong, W. W. H.; Ma, C.-Q. ACS Appl. Energy Mater. 2020, 3, 9714.
[125]
Zheng, Z.; He, E.; Lu, Y.; Yin, Y.; Pang, X.; Guo, F.; Gao, S.; Zhao, L.; Zhang, Y. ACS Appl. Mater. Interfaces 2021, 13, 15448.
[126]
Kim, D. H.; Seo, H. O.; Han, S. W.; Park, E. J.; Jeong, M.-G.; Kim, K.-D.; Gantefoer, G.; Kim, Y. D. J. Phys. Chem. C 2016, 120, 19942.
[127]
Jiang, Y.; Sun, L.; Jiang, F.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Liu, T.; Hu, L.; Jiang, X.; Zhou, Y. Mater. Horiz. 2019, 6, 1438.
[128]
Manor, A.; Katz, E. A.; Tromholt, T.; Krebs, F. C. Adv. Energy Mater. 2011, 1, 836.
[129]
Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Nat Commun. 2019, 10, 2152.
[130]
Liu, Z. X.; Yu, Z. P.; Shen, Z.; He, C.; Lau, T. K.; Chen, Z.; Zhu, H.; Lu, X.; Xie, Z.; Chen, H.; Li, C. Z. Nat. Commun. 2021, 12, 3049.
[131]
Li, X.; Weng, K.; Ryu, H. S.; Guo, J.; Zhang, X.; Xia, T.; Fu, H.; Wei, D.; Min, J.; Zhang, Y.; Woo, H. Y.; Sun, Y. Adv. Funct. Mater. 2019, 30, 1906809.
[132]
Lv, M.; Zhou, R.; Lv, K.; Wei, Z. Acta Chim. Sinica 2021, 79, 284. (in Chinese)
[132]
(吕敏, 周瑞敏, 吕琨, 魏志祥, 化学学报, 2021, 79, 284.)
[133]
Miao, J.; Ding, Z.; Liu, J.; Wang, L. Acta Chim. Sinica 2021, 79, 545. (in Chinese)
[134]
(苗俊辉, 丁自成, 刘俊, 王利祥, 化学学报, 2021, 79, 545.)
[135]
Kan, B.; Kan, Y.; Zuo, L.; Shi, X.; Gao, K. InfoMat 2020, 3, 175.
[136]
He, Y.; Heumüller, T.; Lai, W.; Feng, G.; Classen, A.; Du, X.; Liu, C.; Li, W.; Li, N.; Brabec, C. J. Adv. Energy Mater. 2019, 9, 1900409.
[137]
Zhang, Z.; Miao, J.; Ding, Z.; Kan, B.; Lin, B.; Wan, X.; Ma, W.; Chen, Y.; Long, X.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Nat. Commun. 2019, 10, 3271.
[138]
Wang, W.; Chen, B.; Jiao, X.; Guo, J.; Sun, R.; Guo, J.; Min, J. Org. Electron. 2019, 70, 78.
[139]
Fan, Q.; Su, W.; Chen, S.; Liu, T.; Zhuang, W.; Ma, R.; Wen, X.; Yin, Z.; Luo, Z.; Guo, X.; Hou, L.; Moth-Poulsen, K.; Li, Y.; Zhang, Z.; Yang, C.; Yu, D.; Yan, H.; Zhang, M.; Wang, E. Angew. Chem., Int. Ed. 2020, 59, 19835.
[140]
Kim, T.; Younts, R.; Lee, W.; Lee, S.; Gundogdu, K.; Kim, B. J. J. Mater. Chem. A 2017, 5, 22170.
[141]
Xu, Y.; Yuan, J.; Zhou, S.; Seifrid, M.; Ying, L.; Li, B.; Huang, F.; Bazan, G. C.; Ma, W. Adv. Funct. Mater. 2019, 29, 1806747.
[142]
Li, Z.; Peng, F.; Quan, H.; Qian, X.; Ying, L.; Cao, Y. Chem. Eng. J. (Amsterdam, Neth.) 2022, 430, 132711.
[143]
Aldrich, T. J.; Matta, M.; Zhu, W.; Swick, S. M.; Stern, C. L.; Schatz, G. C.; Facchetti, A.; Melkonyan, F. S.; Marks, T. J. J. Am. Chem. Soc. 2019, 141, 3274.
[144]
Xin, Y.; Zeng, G.; OuYang, J.; Zhao, X.; Yang, X. J. Mater. Chem. C 2019, 7, 9513.
[145]
Guo, Q.; Lin, J.; Liu, H.; Dong, X.; Guo, X.; Ye, L.; Ma, Z.; Tang, Z.; Ade, H.; Zhang, M.; Li, Y. Nano Energy 2020, 74, 104861.
[146]
Lin, J.; Guo, Q.; Liu, Q.; Lv, J.; Liang, H.; Wang, Y.; Zhu, L.; Liu, F.; Guo, X.; Zhang, M. Chin. J. Chem. 2021, 39, 2685.
[147]
Zhang, J.; Han, Y.; Zhang, W.; Ge, J.; Xie, L.; Xia, Z.; Song, W.; Yang, D.; Zhang, X.; Ge, Z. ACS Appl. Mater. Interfaces 2020, 12, 57271.
[148]
Zhang, C. e.; Ming, S.; Wu, H.; Wang, X.; Huang, H.; Xue, W.; Xu, X.; Tang, Z.; Ma, W.; Bo, Z. J. Mater. Chem. A 2020, 8, 22907.
[149]
Cheng, P.; Zhan, X. Mater. Horiz. 2015, 2, 462.
[150]
Zhao, C.; Wang, J.; Zhao, X.; Du, Z.; Yang, R.; Tang, J. Nanoscale 2021, 13, 2181.
[151]
Pan, M.-A.; Lau, T.-K.; Tang, Y.; Wu, Y.-C.; Liu, T.; Li, K.; Chen, M.-C.; Lu, X.; Ma, W.; Zhan, C. J. Mater. Chem. A 2019, 7, 20713.
[152]
Zeng, A.; Ma, X.; Pan, M.; Chen, Y.; Ma, R.; Zhao, H.; Zhang, J.; Kim, H. K.; Shang, A.; Luo, S.; Angunawela, I. C.; Chang, Y.; Qi, Z.; Sun, H.; Lai, J. Y. L.; Ade, H.; Ma, W.; Zhang, F.; Yan, H. Adv. Funct. Mater. 2021, 31, 2102413.
[153]
Lee, J.; Lee, J.-H.; Yao, H.; Cha, H.; Hong, S.; Lee, S.; Kim, J.; Durrant, J. R.; Hou, J.; Lee, K. J. Mater. Chem. A 2020, 8, 6682.
[154]
Cheng, P.; Yan, C.; Wu, Y.; Wang, J.; Qin, M.; An, Q.; Cao, J.; Huo, L.; Zhang, F.; Ding, L.; Sun, Y.; Ma, W.; Zhan, X. Adv Mater. 2016, 28, 8021.
[155]
Gasparini, N.; Paleti, S. H. K.; Bertrandie, J.; Cai, G.; Zhang, G.; Wadsworth, A.; Lu, X.; Yip, H.-L.; McCulloch, I.; Baran, D. ACS Energy Lett. 2020, 5, 1371.
[156]
Yang, S.; Yang, C.; Zhang, X.; Zheng, Z.; Bi, S.; Zhang, Y.; Zhou, H. J. Mater. Chem. C 2018, 6, 9044.
[157]
Liu, L.; Kan, Y.; Gao, K.; Wang, J.; Zhao, M.; Chen, H.; Zhao, C.; Jiu, T.; Jen, A. K.; Li, Y. Adv. Mater. 2020, 32, 1907604.
[158]
Li, S.; Ma, Q.; Chen, S.; Meng, L.; Zhang, J.; Zhang, Z.; Yang, C.; Li, Y. J. Mater. Chem. C 2020, 8, 15296.
[159]
Yang, W.; Ye, L.; Yao, F.; Jin, C.; Ade, H.; Chen, H. Nano Res. 2019, 12, 777.
[160]
Salvador, M.; Gasparini, N.; Perea, J. D.; Paleti, S. H.; Distler, A.; Inasaridze, L. N.; Troshin, P. A.; Lüer, L.; Egelhaaf, H.-J.; Brabec, C. Energy Environ. Sci. 2017, 10, 2005.
[161]
Qin, M.; Cheng, P.; Mai, J.; Lau, T.-K.; Zhang, Q.; Wang, J.; Yan, C.; Liu, K.; Su, C.-J.; You, W.; Lu, X.; Zhan, X. Sol. RRL 2017, 1, 1700148.
[162]
Turkovic, V.; Engmann, S.; Tsierkezos, N.; Hoppe, H.; Madsen, M.; Rubahn, H.-G.; Ritter, U.; Gobsch, G. Appl. Phys. A 2016, 122.
[163]
Turkovic, V.; Engmann, S.; Tsierkezos, N.; Hoppe, H.; Ritter, U.; Gobsch, G. ACS Appl. Mater. Interfaces 2014, 6, 18525.
[164]
Salvador, M.; Gasparini, N.; Perea, J. D.; Paleti, S. H.; Distler, A.; Inasaridze, L. N.; Troshin, P. A.; Lüer, L.; Egelhaaf, H.-J.; Brabec, C. Energy Environ. Sci. 2017, 10, 2005.
[165]
Turkovic, V.; Prete, M.; Bregnhoj, M.; Inasaridze, L.; Volyniuk, D.; Obrezkov, F. A.; Grazulevicius, J. V.; Engmann, S.; Rubahn, H. G.; Troshin, P. A.; Ogilby, P. R.; Madsen, M. ACS Appl. Mater. Interfaces 2019, 11, 41570.
[166]
Prete, M.; Ogliani, E.; Bregnhøj, M.; Lissau, J. S.; Dastidar, S.; Rubahn, H.-G.; Engmann, S.; Skov, A. L.; Brook, M. A.; Ogilby, P. R.; Printz, A.; Turkovic, V.; Madsen, M. J. Mater. Chem. C 2021, 9, 11838.
[167]
Chen, M.-C.; Chiou, Y.-S.; Chiu, J.-M.; Tedla, A.; Tai, Y. J. Mater. Chem. A 2013, 1, 3680.
[168]
Zeng, M.; Wang, X.; Ma, R.; Zhu, W.; Li, Y.; Chen, Z.; Zhou, J.; Li, W.; Liu, T.; He, Z.; Yan, H.; Huang, F.; Cao, Y. Adv. Energy Mater. 2020, 10, 2000743.
[169]
Li, Y.; Ding, J.; Liang, C.; Zhang, X.; Zhang, J.; Jakob, D. S.; Wang, B.; Li, X.; Zhang, H.; Li, L.; Yang, Y.; Zhang, G.; Zhang, X.; Du, W.; Liu, X.; Zhang, Y.; Zhang, Y.; Xu, X.; Qiu, X.; Zhou, H. Joule. 2021, 5, 3154.
[170]
Tran, H. N.; Park, S.; Wibowo, F. T. A.; Krishna, N. V.; Kang, J. H.; Seo, J. H.; Nguyen-Phu, H.; Jang, S. Y.; Cho, S. Adv. Sci (Weinh) 2020, 7, 2002395.
[171]
Kang, Q.; Zheng, Z.; Zu, Y.; Liao, Q.; Bi, P.; Zhang, S.; Yang, Y.; Xu, B.; Hou, J. Joule 2021, 5, 646.
[172]
Jiang, H.; Li, T.; Han, X.; Guo, X.; Jia, B.; Liu, K.; Cao, H.; Lin, Y.; Zhang, M.; Li, Y.; Zhan, X. ACS Appl. Energy Mater. 2019, 3, 1111.
[173]
Yin, Z.; Mei, S.; Gu, P.; Wang, H. Q.; Song, W. iScience 2021, 24, 103027.
[174]
Soultati, A.; Fakharuddin, A.; Polydorou, E.; Drivas, C.; Kaltzoglou, A.; Haider, M. I.; Kournoutas, F.; Fakis, M.; Palilis, L. C.; Kennou, S.; Davazoglou, D.; Falaras, P.; Argitis, P.; Gardelis, S.; Kordatos, A.; Chroneos, A.; Schmidt-Mende, L.; Vasilopoulou, M. ACS Appl. Energy Mater. 2019, 2, 1663.
[175]
Li, Y.; Li, T.; Wang, J.; Zhan, X.; Lin, Y. Sci. Bull. 2022, 67, 171.
文章导航

/