基于热解ZIF-8的氮掺杂碳电化学氧还原合成过氧化氢催化剂
收稿日期: 2022-01-16
网络出版日期: 2022-04-27
基金资助
国家重点研发专项项目(2016YFB0301602); 石油化工催化材料与反应工程国家重点实验室(中国石油化工股份有限公司石油化工科学研究院)开放基金; 国家自然科学基金(21872035); 上海市科委科技基金(19DZ2270100)
Nitrogen-doped Carbon Pyrolyzed from ZIF-8 for Electrocatalytic Oxygen Reduction to Hydrogen Peroxide
Received date: 2022-01-16
Online published: 2022-04-27
Supported by
National Key Research and Development Project of China(2016YFB0301602); State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC); National Natural Science Foundation of China(21872035); Science and Technology Commission of Shanghai Municipality(19DZ2270100)
氧气的两电子还原反应(2e-ORR)是绿色、安全的H2O2合成路线. 本工作以Zn2+和2-甲基咪唑合成的沸石型咪唑酸框架-8 (ZIF-8)为前驱体, 通过高温热解炭化, 利用ZIF-8中的锌在高温下的可挥发性, 制备了非金属氮掺杂石墨化多孔碳材料(p-ZIF), 系统考察了ZIF-8热解炭化温度(900、950和1000 ℃)对催化剂结构和2e-ORR催化性能的影响. p-ZIF不仅保留了ZIF-8规整的菱形十二面体形貌, 而且氮含量高, 拥有高的比表面积和多级孔结构. 在酸性条件下的2e-ORR反应中, 三个p-ZIF催化剂均显示了较低的过电位和较低的Tafel斜率, 而且稳定性良好. 其中在H2O2选择性最高的p-ZIF-950催化剂上, 过电位为86 mV, H2O2选择性最高可达89.2%. 在6 h恒电位反应中, p-ZIF-950催化剂能够以87 mmol•gcat-1•h-1的恒定速率产生H2O2. 根据多种表征结果, 推测p-ZIF催化剂的孔径尺寸和石墨N含量是影响其2e-ORR催化性能的主要因素.
王丹 , 封波 , 张晓昕 , 刘亚楠 , 裴燕 , 乔明华 , 宗保宁 . 基于热解ZIF-8的氮掺杂碳电化学氧还原合成过氧化氢催化剂[J]. 化学学报, 2022 , 80(6) : 772 -780 . DOI: 10.6023/A22010030
Electrochemical production of H2O2 from O2 via the two-electron reduction reaction (2e-ORR) is a green and safe process that is being heavily investigated. Zeolitic imidazolate frameworks (ZIF) as a subclass of metal-organic frameworks (MOFs) have attracted enormous scientific interests due to their high porosity, excellent mechanical stability, tunable surface properties, and exceptional chemical and thermal stabilities. Herein, a series of pyrolyzed ZIF catalysts (p-ZIF) were synthesized by treating 2-methylimidazole zinc salt (ZIF-8) at high temperatures (900, 950 and 1000 ℃). During pyrolysis, zinc was vaporized, leaving the metal-free nitrogen-doped porous graphitic carbon materials. The effects of the pyrolysis temperature on the structure and catalytic performance of the p-ZIF catalysts in 2e-ORR were systematically studied. In 2e-ORR in an acidic electrolyte, the p-ZIF catalysts displayed low overpotential, low Tafel slope, and negligible activity loss after 3000 cycles of accelerated durability testing (ADT). In particular, the p-ZIF-950 catalyst possessed the highest H2O2 partial current of 0.185 mA at 0 V vs. RHE, followed by the p-ZIF-900 (0.146 mA) and p-ZIF-1000 (0.135 mA) catalysts. The H2O2 selectivity over the p-ZIF-950 catalyst was also constantly higher than those over the other two p-ZIF catalysts across the potential range investigated and maximized at 89.2%. Highly efficient and durable H2O2 production was demonstrated on the p-ZIF-950 catalyst by the linear accumulation of H2O2 to 522 mmol•gcat-1 within 6 h, translating to an H2O2 production rate of 87 mmol•gcat-1•h-1. The morphology, composition, carbon defect, texture, and surface chemical state were characterized by techniques such as transmission electron microscopy (TEM), elemental analysis, Raman spectroscopy, N2 physisorption, and X-ray photoelectron spectroscopy (XPS). The p-ZIF catalysts not only nicely carried over the regular rhombic dodecahedral morphology of ZIF-8, but also possessed abundant amount of nitrogen, high specific surface area, and hierarchical pore structure. According to the characterization results, the specific surface area and carbon defect are unlikely the key factors that determine the catalytic performance, while the evolutions of the average pore size and surface content of graphitic N mimicked those of the H2O2 partial current and selectivity on the p-ZIF catalysts. In light of the literature works, the large pore size is proposed to facilitate the in-diffusion of O2 and out-diffusion of H2O2, while the graphitic N is able to enhance the activation of O2 and desorption of H2O2, both of which are beneficial to the kinetics of the 2e-ORR reaction.
Key words: hydrogen peroxide; ZIF-8; pyrolysis; electrocatalysis; oxygen reduction reaction
| [1] | Li, H. B.; Zheng, B.; Pan, Z. Y.; Zong, B. N.; Qiao, M. H. Front. Chem. Sci. Eng. 2018, 12, 124. |
| [2] | Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J. Nat. Mater. 2013, 12, 1137. |
| [3] | Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Angew. Chem. Int. Ed. 2006, 45, 6962. |
| [4] | Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Colic, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. ACS Catal. 2018, 8, 4064. |
| [5] | Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y.; Kiely, C. J.; Hutchings, G. J. Science 2016, 351, 965. |
| [6] | Sun, Y. Y.; Li, S.; Jovanov, Z. P.; Bernsmeier, D.; Wang, H.; Paul, B.; Wang, X.; Kühl, S.; Strasser, P. ChemSusChem 2018, 11, 3388. |
| [7] | Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Science 2019, 366, 226. |
| [8] | Zhang, J.; Zhang, H.; Cheng, M. J.; Lu, Q. Small 2020, 16, 1902845. |
| [9] | Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Angew. Chem. Int. Ed. 2016, 55, 2058. |
| [10] | Wang, Y. L.; Li, S. S.; Yang, X. H.; Xu, G. Y.; Zhu, Z. C.; Chen, P.; Li, S. Q. J. Mater. Chem. A 2019, 7, 21329. |
| [11] | Zhao, H. Y.; Shen, X. Q.; Chen, Y.; Zhang, S. N.; Gao, P.; Zhen, X. J.; Li, X. H.; Zhao, G. H. Chem. Commun. 2019, 55, 6173. |
| [12] | Sa, Y. J.; Kim, J. H.; Joo, S. H. Angew. Chem. Int. Ed. 2019, 58, 1100. |
| [13] | Zhou, W.; Meng, X.; Gao, J.; Alshawabkeh, A. N. Chemosphere 2019, 225, 588. |
| [14] | Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W.; Xia, B. Y. Science 2019, 366, 850. |
| [15] | Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760. |
| [16] | Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert, R.; Roldan Cuenya, B.; Strasser, P. ACS Catal. 2018, 8, 2844. |
| [17] | Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Adv. Energy Mater. 2018, 8, 1801909. |
| [18] | Melchionna, M.; Fornasiero, P.; Prato, M. Adv. Mater. 2019, 31, 1802920. |
| [19] | Lu, X. Q.; Cao, S. F.; Wei, X. F.; Li, S. R.; Wei, S. X. Acta Chim. Sinica 2020, 78, 1001. (in Chinese) |
| [19] | (鲁效庆, 曹守福, 魏晓飞, 李邵仁, 魏淑贤, 化学学报, 2020, 78, 1001.) |
| [20] | Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. ACS Sustainable Chem. Eng. 2020, 8, 2883. |
| [21] | Pizzutilo, E.; Kasian, O.; Choi, C. H.; Cherevko, S.; Hutchings, G. J.; Mayrhofer, K. J. J.; Freakley, S. J. Chem. Phys. Lett. 2017, 683, 436. |
| [22] | He, D. Q.; Zhong, L. J.; Gan, S. Y.; Xie, J. X.; Wang, W.; Liu, Z. B.; Guo, W.; Yang, X.; Niu, L. Electrochim. Acta 2021, 371, 137721. |
| [23] | Xi, J.; Yang, S.; Silvioli, L.; Cao, S.; Liu, P.; Chen, Q.; Zhao, Y.; Sun, H.; Hansen, J. N.; Haraldsted, J. B.; Kibsgaard, J.; Rossmeisl, J.; Bals, S.; Wang, S.; Chorkendorff, I. J. Catal. 2021, 393, 313. |
| [24] | Shen, R. G.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B.; Chen, C.; Wang, D. G.; Li, Y. D. Chem 2019, 5, 2099. |
| [25] | Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Chem 2020, 6, 658. |
| [26] | Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y.F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Norskov, J. K.; Siahrostami, S.; Wang, H. T. Nat. Commun. 2019, 10, 3997. |
| [27] | Sun, Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X.; Moeller, T.; Bernsmeier, D.; Rossmeisl, J.; Jaouen, F.; Strasser, P. J. Am. Chem. Soc. 2019, 141, 12372. |
| [28] | Perazzolo, V.; Durante, C.; Pilot, R.; Paduano, A.; Zheng, J.; Rizzi, G. A.; Martucci, A.; Granozzi, G.; Gennaro, A. Carbon 2015, 95, 949. |
| [29] | Hasché, F.; Oezaslan, M.; Strasser, P.; Fellinger, T. J. Energy Chem. 2016, 25, 251. |
| [30] | Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J.; Liu, Y. Y.; Wang, H.T. Nat. Commun. 2021, 12, 4225. |
| [31] | Chen, S. Y.; Luo, T.; Chen, K. J.; Lin, Y. Y.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. J. W.; Li, X. Q.; Hu, J. H.; Li, H. M.; Zhu, M. S.; Liu, M. Angew. Chem. Int. Ed. 2021, 60, 16607. |
| [32] | Xu, Z. H.; Shen, L. M.; Wu, Q.; Sun, T.; Xu, Y. Y.; Li, D. Q.; Du, L. Y.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 793. (in Chinese) |
| [32] | (许智慧, 沈丽明, 吴强, 孙涛, 徐宇洋, 黎聃勤, 杜玲玉, 杨立军, 王喜章, 胡征, 化学学报, 2015, 73, 793.) |
| [33] | Qin, M. C.; Fan, S. Y.; Wang, L.; Gan, G. Q.; Wang, X. Y.; Cheng, J.; Hao, Z. P.; Li, X. Y. J. Colloid Interface Sci. 2020, 562, 540. |
| [34] | Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E.; Sinclair, R.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. N. J. Am. Chem. Soc. 2018, 140, 7851. |
| [35] | Han, G. F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J. P.; Kim, S. W.; Kim, S. J.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L.; Siahrostami, S.; Baek, J. B. Nat. Commun. 2020, 11, 7293. |
| [36] | Zhao, K.; Su, Y.; Quan, X.; Liu, Y. M.; Chen, S.; Yu, H. T. J. Catal. 2018, 357, 118. |
| [37] | Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M.; Li, Q.; Ma, D. M.; Sun, X. P. Angew. Chem. Int. Ed. 2021, 60, 10583. |
| [38] | Fellinger, T.; Hasché, F.; Strasser, P.; Antonietti, M. J. Am. Chem. Soc. 2012, 134, 4072. |
| [39] | Zhou, Y.; Chen, G.; Zhang, J. J. J. Mater. Chem. A 2020, 8, 20849. |
| [40] | Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Nanoscale 2014, 6, 6590. |
| [41] | Guo, W. J.; Yu, J.; Dai, Z.; Hou, W. Z. Acta Chim. Sinica 2019, 77, 1203. (in Chinese) |
| [41] | (郭文娟, 于洁, 代昭, 侯伟钊, 化学学报, 2019, 77, 1203.) |
| [42] | Liu, Y.; Quan, X.; Fan, X.; Wang, H.; Chen, S. Angew. Chem. Int. Ed. 2015, 54, 6837. |
| [43] | Sun, Y. H.; Qi, Y. X.; Shen, Y.; Jing, C. J.; Chen, X. X.; Wang, X. X. Acta Chim. Sinica 2020, 78, 147. (in Chinese) |
| [43] | (孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.) |
| [44] | Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Adv. Mater. 2017, 29, 1700213. |
| [45] | Stanczyk, K.; Dziembaj, R.; Piwowarska, Z.; Witkowski, S. Carbon 1995, 33, 1383. |
| [46] | Amali, A. J.; Sun, J. K.; Xu, Q. Chem. Commun. 2014, 50, 1519. |
| [47] | Wei, S. J.; Li, A.; Liu, J. C.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; Xiao, H.; Chen, C.; Wang, D. S.; Peng, Q.; Gu, L.; Han, X. D.; Li, J.; Li, Y. D. Nat. Nanotechnol. 2018, 13, 856. |
| [48] | Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. Nat. Catal. 2018, 1, 156. |
| [49] | Perazzolo, V.; Daniel, G.; Brandiele, R.; Picelli, L.; Rizzi, G. A.; Isse, A. A.; Durante, C. Chem. Eur. J. 2021, 27, 1002. |
| [50] | Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. Energy Environ. Sci. 2014, 7, 442. |
| [51] | Gu, D. G.; Wang, F. F.; Yan, K.; Ma, R. G.; Wang, J. C. ACS Sustainable Chem. Eng. 2018, 6, 1951. |
| [52] | Li, L. Q.; Tang, C.; Zheng, Y.; Xia, B. Q.; Zhou, X. L.; Xu, H. L.; Qiao, S. Z. Adv. Energy Mater. 2020, 10, 2000789. |
| [53] | Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W. F.; Higgins, D.; Sinclair, R.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. N. ACS Sustainable Chem. Eng. 2018, 6, 311. |
| [54] | Park, J.; Nabae, Y.; Hayakawa, T.; Kakimoto, M. ACS Catal. 2014, 4, 3749. |
| [55] | Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M.; Fornasiero, P. Chem 2018, 4, 106. |
| [56] | Zhang, J. Y.; Zhang, G.; Jin, S. Y.; Zhou, Y. J.; Ji, Q. H.; Lan, H. C.; Liu, H. J.; Qu, J. H. Carbon 2020, 163, 154. |
| [57] | Contreras, E.; Dominguez, D.; Tiznado, H.; Guerrero-Sanchez, J.; Takeuchi, N.; Alonso-Nunez, G.; Contreras, O. E.; Oropeza- Guzman, M. T.; Romo-Herrera, J. M. Nanoscale 2019, 11, 2829. |
/
| 〈 |
|
〉 |