收稿日期: 2022-03-17
网络出版日期: 2022-05-06
基金资助
天津市教委高等学校科技发展基金计划项目(2020KJ007)
Recent Advances in the Synthesis of Arylstannanes
Received date: 2022-03-17
Online published: 2022-05-06
Supported by
Science & Technology Development Fund of Tianjin Education Commission for Higher Education(2020KJ007)
芳基锡烷化合物是参与构筑功能分子中芳基碳碳键和碳杂原子键的一类重要合成中间体. 其在药物化学、材料科学以及有机合成中都具有重要应用, 因此发展其高效新颖的合成方法具有重要的意义. 根据反应机理的类型, 综述了近些年来合成芳基锡烷的方法, 包括(1)芳香亲核试剂的锡化反应; (2)芳香亲电试剂的锡化反应; (3)过渡金属催化的锡化偶联反应; (4)芳基自由基中间体介导的锡化反应; (5)炔烃的环化和串联的锡化反应. 最后, 进一步分析了未来合成芳基锡烷的研究趋势.
关键词: 芳基锡烷; Stille交叉偶联; 锡化反应; 芳基自由基
岳广禄 , 魏婧瑶 , 邱頔 , 莫凡洋 . 芳基锡烷的合成研究进展[J]. 化学学报, 2022 , 80(7) : 956 -969 . DOI: 10.6023/A22030118
Arylstannanes are highly valuable synthetic intermediates in constructing aryl carbon-carbon bonds and carbon-heteroatom bonds in functional molecules. These compounds have demonstrated great applications in medicinal chemistry, materials science and organic synthesis. Due to the synthetic value, development of efficient and novel methods to synthesize arylstannanes is of significant importance. According to the type of reaction mechanism, this content will illustrate the methods for synthesizing arylstannanes in recent years including (1) stannylation of aromatic nucleophiles; (2) stannylation of aromatic electrophiles; (3) transition-metal-catalyzed stannylation coupling reactions; (4) stannylation reactions mediated by aryl radical intermediates; (5) cyclization of alkynes and tandem stannylation. Finally, we further provide a perspective on the development direction of the synthesis of arylstannanes.
Key words: arylstannanes; Stille cross-coupling reaction; stannylation; aryl radical
[1] | (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062. |
[1] | (b) Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508. |
[1] | (c) Farina, V. Pure Appl. Chem. 1996, 68, 73. |
[1] | (d) Kosugi, M.; Fugami, K. Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E., Wiley, New York, 2002, p. 263. |
[1] | (e) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. |
[1] | (f) Espinet, P.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 4704. |
[1] | (g) Wang, D.-P.; Zhang, X.-D.; Liang, Y.; Li, J.-H. Chin. J. Org. Chem. 2006, 26, 19. (in Chinese) |
[1] | (王德平, 张旭东, 梁云, 李金恒, 有机化学, 2006, 26, 19. ) |
[1] | (h) Wang, S.-H.; Yan, S.-G.; Hu, X.-Q.; Guo, H.-F. Acta Chim. Sinica 1993, 51, 393. (in Chinese) |
[1] | (王世华, 阎圣刚, 胡信全, 郭和夫, 化学学报, 1993, 51, 393.) |
[2] | (a) Ragan, J. A.; Raggon, J. W.; Hill, P. D.; Jones, B. P.; McDermott, R. E.; Munchhof, M. J.; Marx, M. A.; Casavant, J. M.; Cooper, B. A.; Doty, J. L.; Lu, Y. Org. Process Res. Dev. 2003, 7, 676. |
[2] | (b) Alonso, E.; Fuwa, H.; Vale, C.; Suga, Y.; Goto, T.; Konno, Y.; Sasaki, M.; LaFerla, F. M.; Vieytes, M. R.; Gime?nez-Llort, L.; Botana, L. M. J. Am. Chem. Soc. 2012, 134, 7467. |
[2] | (c) Valot, G.; Regens, C. S.; O’Malley, D. P.; Godineau, E.; Takikawa, H.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 9534. |
[2] | (d) Li, H.-L.; Chen, Q.-F.; Lu, Z.-H.; Li, A. J. Am. Chem. Soc. 2016, 138, 15555. |
[3] | (a) Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. Chem. Rev. 2011, 111, 1493. |
[3] | (b) Murphy, A. R.; Liu, J.; Luscombe, C.; Kavulak, D.; Frechet, J. M. J.; Kline, R. J.; McGehee, M. D. Chem. Mater. 2005, 17, 4892. |
[3] | (c) Cao, Y.; Guo, Z.-H.; Chen, Z.-Y.; Yuan, J.-S.; Dou, J.-H.; Zheng, Y.-Q.; Wang, J.-Y.; Pei, J. Polym. Chem. 2014, 5, 5369. |
[3] | (d) Yu, Z.-D.; Lu, Y.; Wang, J.-Y.; Pei, J. Chem. Eur. J. 2020, 26, 16194. |
[3] | (e) Lu, Y.; Yu, Z.-D.; Un, H.-L.; Yao, Z.-F.; You, H.-Y.; Jin, W.-L.; Li, L.; Wang, Z.-Y.; Dong, B.-W.; Barlow, S.; Longhi, E.; Di, C.-A.; Zhu, D.-B.; Wang, J.-Y.; Silva, C.; Marder, S. R.; Pei, J. Adv. Mater. 2021, 33, 2005946. |
[4] | Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron Lett. 2002, 43, 3091. |
[5] | (a) Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. |
[5] | (b) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150. |
[5] | (c) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 4648. |
[5] | (d) Makaravage, K. J.; Brooks, A. F.; Mossine, A. V.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2016, 18, 5440. |
[5] | (e) Gamache, R. F.; Waldmann, C.; Murphy, J. M. Org. Lett. 2016, 18, 4522. |
[6] | Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308. |
[7] | (a) Faraoni, M. B.; Koll, L. C.; Mandolesi, S. D.; Zúñiga, A. E.; Podestá, J. C. J. Organomet. Chem. 2000, 613, 236. |
[7] | (b) Britovsek, G. J. P.; Ugolotti, J.; White, A. J. P. Organometallics 2005, 24, 1685. |
[8] | (a) Soderquist, J. A.; Hassner, A. J. Am. Chem. Soc. 1980, 102, 1577. |
[8] | (b) Moerlein, S. M. J. Organomet. Chem. 1989, 319, 29. |
[8] | (c) Hayashi, T.; Ishigedani, M. Tetrahedron 2001, 57, 2589. |
[8] | (d) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117. |
[9] | Blum, M. S.; Pratt, J. J., Jr. J. Econ. Entomol. 1960, 53, 445. |
[10] | (a) Yammal, C. C.; Podestá, J. C.; Rossi, R. A. J. Org. Chem. 1992, 57, 5720. |
[10] | (b) Lockhart, M. T.; Chopa, A. B.; Rossi, R. A. J. Organomet. Chem. 1999, 582, 229. |
[10] | (c) Chopa, A. B.; Lockhart, M. T.; Silbestri, G. Organometallics 2000, 19, 2249. |
[11] | (a) Azarian, D.; Dua, S. S.; Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1976, 117, C55. |
[11] | (b) Azizian, H.; Eaborn, C. E.; Pidcock, A. J. Organomet. Chem. 1981, 215, 49. |
[12] | Zhao, Z.-Q.; Sun, B.; Peng, L.-Z.; Li, Y.; Li, Y.-L. Chin. J. Chem. 2004, 22, 1382. |
[13] | Gerbino, D. C.; Fidelibus, P. M.; Mandolesi, S. D.; Ocampo, R. A.; Scoccia, J.; Podestá, J. C. J. Organomet. Chem. 2013, 741, 24. |
[14] | Knochel, P.; Dagousset, G.; François, C.; Leόn, T.; Blanc, R.; Sansiaume-Dagousset, E. Synthesis 2014, 46, 3133. |
[15] | Gosmini, C.; Perichon, J. Org. Biomol. Chem. 2005, 3, 216. |
[16] | Jeganmohan, M.; Knochel, P. Angew. Chem. Int. Ed. 2010, 49, 8520. |
[17] | Warner, B.-P.; Buchwald, S.-L. J. Org. Chem. 1994, 59, 5822. |
[18] | Tsai, C. H.; Chirdon, D. N.; Maurer, A. B.; Bernhard, S.; Noonan, K. J. Org. Lett. 2013, 15, 5230. |
[19] | Mao, S.; Chen, Z.-K.; Wang, L.; Khadka, D. B.; Xin, M.-H.; Li, P.-F.; Zhang, S.-Q. J. Org. Chem. 2019, 84, 463. |
[20] | Wang, D.-Y.; Wen, X.; Xiong, C.-D.; Zhao, J.-N.; Ding, C.-Y.; Meng, Q.; Zhou, H.; Wang, C.; Uchiyama, M.; Lu, X.-J.; Zhang, A. iScience 2019, 15, 307. |
[21] | Zhao, J.-N.; Kayumov, M.; Wang, D.-Y.; Zhang, A. Org. Lett. 2019, 21, 7303. |
[22] | (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508. |
[22] | (b) Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813. |
[22] | (c) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem. Int. Ed. 2007, 46, 5359. |
[22] | (d) Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458. |
[22] | (e) Zhu, W.; Ma, D. Org. Lett. 2006, 8, 261. |
[22] | (f) Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. B. Angew. Chem. Int. Ed. 2009, 48, 5350. |
[23] | Corcoran, E. B.; Williams, A. B.; Hanson, R. N. Org. Lett. 2012, 14, 4630. |
[24] | Tan, X.; Zhou, Z.-J.; Zhang, J.-X.; Duan, X.-H. Eur. J. Org. Chem. 2014, 24, 5153. |
[25] | Pan, C.-J.; Liu, M.; Duan, X.-H. Chin. J. Org. Chem. 2015, 35, 472. (in Chinese) |
[25] | (潘春娇, 刘敏, 梁云, 段新红, 有机化学, 2015, 35, 472. ) |
[26] | (a) Dubbaka, S. R.; Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674. |
[26] | (b) Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599. |
[26] | (c) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042. |
[27] | (a) Miao, T.; Wang, L. Adv. Synth. Catal. 2014, 356, 967. |
[27] | (b) Qiu, D.; Li, S.; Yue, G.; Mao, J.; Xu, B.; Yuan, X.; Ye, F. Tetrahedron Lett. 2021, 85, 153478. |
[28] | Lian, C.; Yue, G.; Zhang, H.; Wei, L.; Liu, D.; Liu, S.; Fang, H.; Qiu, D. Tetrahedron Lett. 2018, 59, 4019. |
[29] | Yoshida, H.; Honda, Y.; Shirakawa, E.; Hiyama, T. Chem. Commun. 2001, 1880. |
[30] | Yoshida, H.; Kubo, T.; Kuriki, H.; Osaka, I.; Takaki, K.; Ooyama, Y. ChemistrySelect 2017, 2, 3212. |
[31] | Tanaka, H.; Kuriki, H.; Kubo, T.; Osaka, I.; Yoshida, H. Chem. Commun. 2019, 55, 6503. |
[32] | Doster, M. E.; Hatnean, J. A.; Jeftic, T.; Modi, S.; Johnson, S. A. J. Am. Chem. Soc. 2010, 132, 11923. |
[33] | (a) Doster, M. E.; Johnson, S. A. Organometallics 2013, 32, 4174. |
[33] | (b) Elsby, M. R.; Liu, J.; Zhu, S.; Hu, L.; Huang, G.; Johnson, S. A. Organometallics 2019, 38, 436. |
[34] | Komeyama, K.; Asakura, R.; Takaki, K. Org. Biomol. Chem. 2015, 13, 8713. |
[35] | Gu, Y.-T.; Martín, R. Angew. Chem. Int. Ed. 2017, 56, 3187. |
[36] | Yue, H.-F.; Zhu, C.; Rueping, M. Org. Lett. 2018, 20, 385. |
[37] | Wang, X.; Wang, Z.-H.; Liu, L.; Asanuma, Y.; Nishihara, Y. Molecules 2019, 24, 1671. |
[38] | Kayumov, M.; Zhao, J.-N.; Mirzaakhmedov, S.; Wang, D.-Y.; Zhang, A. Adv. Synth. Catal. 2020, 362, 776. |
[39] | (a) Chopa, A. B.; Lockhart, M. T.; Silbestri, G. Organometallics 2001, 20, 3358. |
[39] | (b) Silbestri, G. F.; Lockhart, M. T.; Chopa, A. B. Arkivoc 2011, 210. |
[40] | Chopa, A. B.; Lockhart, M. T.; Dorn, V. B. Organometallics 2002, 21, 1425. |
[41] | Sakamoto, K.; Nagashima, Y.; Wang, C.; Miyamoto, K.; Tanaka, K.; Uchiyama, M. J. Am. Chem. Soc. 2021, 143, 5629. |
[42] | Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S.-B.; Wang, X.; Mo, F.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2013, 52, 11581. |
[43] | Qiu, D.; Wang, S.; Tang, S.-B.; Meng, H.; Jin, L.; Mo, F.; Zhang, Y.; Wang, J. J. Org. Chem. 2014, 79, 1979. |
[44] | Chen, K.; He, P.; Zhang, S.; Li, P. Chem. Commun. 2016, 52, 9125. |
[45] | (a) Lian, C.; Yue, G.; Mao, J.; Liu, D.; Ding, Y.; Liu, Z.; Qiu, D.; Zhao, X.; Lu, K.; Fagnoni, M.; Protti, S. Org. Lett. 2019, 21, 5187. |
[45] | (b) Qiu, D.; Lian, C.; Mao, J.; Fagnoni, M.; Protti, S. J. Org. Chem. 2020, 85, 12813. |
[46] | Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. J. Am. Chem. Soc. 2020, 142, 2087. |
[47] | Nakao, Y.; Hirata, Y.; Ishihara, S.; Oda, S.; Yukawa, T.; Shirakawa, E.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 15650. |
[48] | Chen, Y.-F.; Chen, M.; Liu, Y.-H. Angew. Chem. Int. Ed. 2012, 51, 6181. |
[49] | Liu, J.; Xie, X.; Liu, Y.-H. Chem. Commun. 2013, 49, 11794. |
[50] | Pati, K.; Michas, C.; Allenger, D.; Piskun, I.; Coutros, P. S.; Gomes, G. P.; Alabugin, I. V. J. Org. Chem. 2015, 80, 11706. |
[51] | (a) Harris, T.; Gomes, G. P.; Clark, R. J.; Alabugin, I. V. J. Org. Chem. 2016, 81, 6007. |
[51] | (b) Gonzalez-Rodriguez, E.; Abdo, M. A.; Gomes, G. P.; Ayad, S.; White, F. D.; Tsvetkov, N. P.; Hanson, K.; Alabugin, I. V. J. Am. Chem. Soc. 2020, 142, 8352. |
/
〈 |
|
〉 |