研究论文

ZIF-67/石墨烯复合物衍生的氮掺杂碳限域Co纳米颗粒用于高效电催化氧还原

  • 闫绍兵 ,
  • 焦龙 ,
  • 何传新 ,
  • 江海龙
展开
  • a 中国科学技术大学化学系 合肥 230026
    b 深圳大学化学系 广东深圳 518071

收稿日期: 2022-04-01

  网络出版日期: 2022-05-06

基金资助

科技部重点研发计划(2021YFA1500400); 国家自然科学基金(21725101); 国家自然科学基金(22161142001); 国家自然科学基金(22001242)

Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction

  • Shaobing Yan ,
  • Long Jiao ,
  • Chuanxin He ,
  • Hailong Jiang
Expand
  • a Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
    b Department of Chemistry, Shenzhen University, Shenzhen, Guangdong 518071, China
* E-mail: ;
; Tel.: 0551-63607861; Fax: 0551-63607861

Received date: 2022-04-01

  Online published: 2022-05-06

Supported by

National Key Research and Development Program of China(2021YFA1500400); National Natural Science Foundation of China(21725101); National Natural Science Foundation of China(22161142001); National Natural Science Foundation of China(22001242)

摘要

燃料电池阴极氧还原(ORR)催化剂目前主要以商业Pt/C为主, 其高成本和稀缺性极大地限制了燃料电池的广泛应用. 为了替代Pt/C催化剂, 廉价高效的非贵金属催化剂目前受到了广泛的研究和关注. 利用氧化石墨烯(GO)为诱导模板, 借助表面丰富的含氧官能团, 实现了Co基金属有机框架材料(MOF) (ZIF-67)在GO表面的原位生长, 构筑了ZIF-67/GO层状复合材料. 热解过程中, 石墨烯的存在有效抑制了Co纳米颗粒的团聚, 并且很好地维持了原始的层状结构. 最终获得的Co@N-C/rGO复合催化剂材料实现了活性位的高度分散, 并且具有丰富的孔结构和优异的导电性能. 在电化学性能测试中Co@N-C/rGO表现出优异的ORR性能, 其起始电位为0.96 V, 半波电位0.83 V, 远优于ZIF-67直接热解得到的Co@N-C材料, 且性能与商业Pt/C催化剂相当. 此外, Co@N-C/rGO复合催化剂还表现出良好的催化稳定性和甲醇耐受性, 显示出该材料作为燃料电池氧还原催化剂的重要潜力.

本文引用格式

闫绍兵 , 焦龙 , 何传新 , 江海龙 . ZIF-67/石墨烯复合物衍生的氮掺杂碳限域Co纳米颗粒用于高效电催化氧还原[J]. 化学学报, 2022 , 80(8) : 1084 -1090 . DOI: 10.6023/A22040143

Abstract

Commercial Pt/C, with the ideal 4e- transfer process for oxygen reduction reaction (ORR), is regarded as the optimal cathode catalyst of fuel cells at present. However, as a noble metal element, the high cost and scarcity of Pt seriously restrict the wide application of fuel cells. On account of this, cheap and high-performance non-noble metal catalysts receive extensive research attentions at present. In this work, by using graphene oxide (GO) as the template, we can realize the in-situ growth of Co-based metal organic framework (MOF) (ZIF-67) on the GO surface by means of the abundant oxygen-containing functional groups on GO, forming the ZIF-67/GO layered composite. During the pyrolysis at 700 ℃ in N2 atmosphere, the graphene can effectively inhibit the agglomeration of Co nanoparticles with the well retained layered morphology, which can be confirmed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and nitrogen isothermal adsorption tests were used to analyze the components and microstructure of obtained materials. Moreover, the catalytic performances of different material towards ORR have been also measured by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis in alkaline electrolyte with rotating disk electrode (RDE) at different speeds. Thanks to the high dispersion of active sites, abundant pore structures and excellent conductivity of the obtained Co@N-C/rGO composite, it shows excellent ORR performances with an initial potential of 0.96 V and a half-wave potential of 0.83 V, far superior to that of the Co@N-C catalyst obtained by direct pyrolysis of ZIF-67, and even comparable to that of commercial Pt/C catalyst. In addition, the Co@N-C/rGO composite also exhibits good catalytic stability under constant potential for 20000 s and shows favorable methanol tolerance which is better than Pt/C, demonstrating its great potential as an oxygen reduction catalyst for fuel cell applications.

参考文献

[1]
Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. EnergyChem 2020, 2, 100027.
[2]
Tang, C.; Wang, H.-F.; Zhang, Q. Acc. Chem. Res. 2018, 51, 881.
[3]
Xu, H.; Cheng, D.; Cao, D.; Zeng, X. Nat. Catal. 2018, 1, 339.
[4]
He, C.; Wu, Q.-J.; Mao, M.-J.; Zou, Y.-H.; Liu, B.-T.; Huang, Y.-B.; Cao, R. CCS Chem. 2020, 2, 2368.
[5]
Yang, Z.; Yang, H.; Shang, L.; Zhang, T. Angew. Chem., Int. Ed. 2022, 61, e202113278.
[6]
Yi, J.-D.; Xu, R.; Wu, Q.; Zhang, T.; Zang, K.-T.; Luo, J.; Liang, Y.-L.; Huang, Y.-B.; Cao, R. ACS Energy Lett. 2018, 3, 883.
[7]
Zhang, H.; Xia, W.; Shen, H.; Guo, W.; Liang, Z.; Zhang, K.; Wu, Y.; Zhu, B.; Zou, R. Angew. Chem., Int. Ed. 2020, 59, 1871.
[8]
Zhang, J.; Dai, L. ACS Catal. 2015, 5, 7244.
[9]
Jia, Y.; Xue, Z.; Yang, J.; Liu, Q.; Xian, J.; Zhong, Y.; Sun, Y.; Zhang, X.; Liu, Q.; Yao, D.; Li, G. Angew. Chem., Int. Ed. 2022, 61, e202110838.
[10]
Han, A.; Wang, X.; Tang, K.; Zhang, Z.; Ye, C.; Kong, K.; Hu, H.; Zheng, L.; Jiang, P.; Zhao, C.; Zhang, Q; Wang, D.; Li, Y. Angew. Chem., Int. Ed. 2021, 60, 119262.
[11]
Zhang, E.; Tao, L.; An, J.; Zhang, J.; Meng, L.; Zheng, X.; Wang, Y.; Li, N.; Du, S.; Zhang, J.; Wang, D.; Li, Y. Angew. Chem., Int. Ed. 2022, 61, e202117347.
[12]
Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; Ma, J. Y.; Lin, F.; Su, D.; Lu, G.; Guo, S. Nature 2019, 574, 81.
[13]
Dou, S.; Tao, L.; Huo, J.; Wang, S.; Dai, L. Energy Environ. Sci. 2016, 9, 1320.
[14]
Chen, X.; Ma, D.-D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X.-T.; Zhu, Q.-L. Appl. Catal. B 2020. 267, 118720.
[15]
Lu, X.; Xia, B.; Zang, S.-Q.; Lou, X. Angew. Chem., Int. Ed. 2020, 59, 4634.
[16]
Xiong, W.; Li, H.; You, H.; Cao, M.; Cao, R. Natl. Sci. Rev. 2020, 7, 609.
[17]
Shan, Y.; Chen, L.; Pang, H.; Xu, Q. Small Struct. 2020, 2, 2000078.
[18]
He, C.; Liang, J.; Zou, Y.-H.; Yi, J.-D.; Huang, Y.-B.; Cao, R. Natl. Sci. Rev. 2021, DOI: 10.1093/nsr/nwab157.
[19]
Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W; Mao, J.; Zheng, X.; Yan, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Adv. Mater. 2018, 30, e1800396.
[20]
Jiao, L.; Yang, W.; Wan, G.; Zhang, R.; Zheng, X.; Zhou, H.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2020, 59, 20589.
[21]
Wang, Y.; Huang, N.-Y.; Shen, J.-Q.; Liao, P.-Q.; Chen, X.-M.; Zhang, J.-P. J. Am. Chem. Soc. 2018, 140, 38.
[22]
Jiao, L.; Zhou, Y.-X.; Jiang, H.-L. Chem. Sci. 2016, 7, 1690.
[23]
Wu, Q.; Zhang, C.; Sun, K.; Jiang, H.-L. Acta Chim. Sinica 2020, 78, 688. (in Chinese)
[23]
(吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
[24]
Sun, T.; Li, Y.; Cui, T.; Xu, L.; Wang, Y.-G.; Chen, W.; Zhang, P.; Zheng, T.; Fu, X.; Zhang, S.; Zhang, Z.; Wang, D.; Li, Y. Nano Lett. 2020, 20, 6206.
[25]
Ding, D.; Shen, K.; Chen, X.; Chen, H.; Chen, J.; Fan, T.; Wu, R.; Li, Y. ACS Catal. 2018, 8, 7879.
[26]
Yuan, S.; Zhang, J.; Hu, L.; Li, J.; Li, S.; Gao, Y.; Zhang, Q.; Gu, L.; Yang, W.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2021, 60, 21685.
[27]
Wang, Y.; Waterhouse, G.; Shang, L.; Zhang, T. Adv. Energy Mater. 2020, 11, 2003323.
[28]
Hu, L.; Li, W.; Wang, L.; Wang, B. EnergyChem 2021, 3, 100056.
[29]
Hwang, E. H.; Adam, S.; Sarma, S. Phys. Rev. Lett. 2007, 98, 186806.
[30]
Xue, Z.; Li, Y.; Zhang, Y.; Geng, W.; Jia, B.; Tang, J.; Bao, S.; Wang, H.-P.; Fan, Y.; Wei, Z.-W.; Zhang, Z.; Ke, Z.; Li, G.; Su, C.-Y. Adv. Energy Mater. 2018, 8, 1801564.
[31]
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tuntuc, E; Banerjee, S.; Colombo, L.; Ruoff, R. Science 2009, 324, 1312.
[32]
Wang, X.-S.; Yang, X.; Chen, C.-H.; Li, H.-F.; Huang, Y.-B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese)
[32]
(王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.)
[33]
Stankovich, S.; Dikin, D; Dommett, G; Kohlhaas, K; Zimney, E.; Stach, E; Piner, R; Nguyen, S.; Ruoff, R. Nature 2006, 442, 282.
[34]
Stoller, M.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. Nano Lett. 2008, 8, 3498.
[35]
Liu, S.; Zhang, H.; Zhao, Q.; Zhang, X.; Liu, R.; Ge, X.; Wang, G.; Zhao, H.; Cai, W. Carbon 2016, 106, 74.
[36]
Chen, K.; Sun, Z.; Fang, R.; Shi, Y.; Cheng, H.-M.; Li, F. Adv. Funct. Mater. 2018, 28, 1707592.
[37]
Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Adv. Funct. Mater. 2018, 28, 1804950.
[38]
Zhang, Z.; Ge, C.; Chen, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. (in Chinese)
[38]
(张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77, 60.)
[39]
Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J.; Gu, L.; Zhao, H.; Li, Y.; Wang, D. Nature Chem. 2018, 10, 924.
[40]
Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S.-Z. Adv. Energy Mater. 2020, 10, 2000789.
[41]
Cheon, J.; Kim, K.; Sa, Y.; Sahgong, S.; Hong, Y.; Woo, J.; Yim, S.; Jeong, H. Y.; Kim, Y.; Joo, S. Adv. Energy Mater. 2016, 6, 1501794.
[42]
Jiang, M.; Fu, C.; Cheng, R.; Zhang, W.; Liu, T.; Wang, R.; Zhang, J.; Sun, B. Adv. Sci. 2020, 7, 2000747.
[43]
Han, H.; Wang, Y.; Zhang, Y.; Cong, Y.; Qin, J.; Gao, R.; Chai, C.; Song, Y. Acta Phys.-Chim. Sin. 2021, 37, 2008017. (in Chinese)
[43]
(韩洪仨, 王彦青, 张云龙, 丛媛媛, 秦嘉琪, 高蕊, 柴春晓, 宋玉江, 物理化学学报, 2021, 37, 2008017.)
[44]
Yi, J.; Li, Q.; Chi, S; Huang, Y.; Cao, R. Chem. Res. Chin. Univ. 2022, 38, 141.
[45]
Zhang, M.-D.; Yi, J.-D,; Huang, Y.-B.; Cao, R. Chin. J. Struct. Chem. 2021, 40, 1213.
文章导航

/