基于ZIF-8/PAN复合薄膜的柔性丙酮气体传感器
收稿日期: 2022-02-27
网络出版日期: 2022-05-07
基金资助
国家自然科学基金(51973015); 国家自然科学基金(52170019); 中央高校基本科研业务费专项资金(06500100)
Flexible Acetone Gas Sensor based on ZIF-8/Polyacrylonitrile (PAN) Composite Film
Received date: 2022-02-27
Online published: 2022-05-07
Supported by
National Natural Science Foundation of China(51973015); National Natural Science Foundation of China(52170019); Fundamental Research Funds for the Central Universities(06500100)
ZIF-8是一种Zn基金属有机骨架材料, 可以吸附丙酮气体从而作为电容式丙酮传感器的气敏材料, 然而ZIF-8的传统使用形式为粉末态, 这导致其不能成为具备柔性的整体, 从而限制了传感器的柔性. 结合包埋种子和二次生长法将ZIF-8与纳米纤维结合成纤维型柔性材料, 并将其作为气敏层制备了柔性电容式丙酮气体传感器. 该传感器在9种常见挥发性有机化合物中表现出良好的选择性, 对250~2000 cm3/m3的丙酮气体具有灵敏的响应、良好的循环响应及长期稳定性. 值得注意的是该柔性传感器不仅在室温下进行传感, 而且在弯折180°的状态下对丙酮气体的响应值与不弯折(0°)状态下几乎一致, 在200次以内的180°弯折-恢复后同样表现出了传感性能的稳定, 表明了其在柔性传感器方面的潜力.
牛犇 , 翟振宇 , 郝肖柯 , 任婷莉 , 李从举 . 基于ZIF-8/PAN复合薄膜的柔性丙酮气体传感器[J]. 化学学报, 2022 , 80(7) : 946 -955 . DOI: 10.6023/A22020093
ZIF-8 is a Zn-based metal organic framework material which can adsorb acetone gas, so it can be used as the gas sensing material of capacitive acetone sensor. In addition, it can be combined with electrospinning nanofibers to form a fibrous gas sensitive material, so that the acetone sensor using it as the gas sensing material has excellent flexibility and this kind of excellent flexibility cannot be achieved in the research of flexible acetone sensor at present. In this work, ZIF-8/ polyacrylonitrile (PAN) nanofiber membrane composite with excellent flexibility was prepared by seed embedding method and secondary growth method. The key to the material preparation process is to prepare 2-methylimidazol/PAN composite membrane firstly by blended electrospinning and use the 2-methylimidazole embedded in the nanofiber membrane as the site for the growth of ZIF-8 on the surface of the nanofiber membrane. Then the metal salts and ligands needed for the growth of ZIF-8 were provided by the secondary growth method in stages and finally the fibrous gas sensitive material ZIF-8/PAN could be obtained. After that, a capacitive acetone sensor using flexible ZIF-8/PAN composite material as flexible gas sensing layer and carbon nanotubes as flexible electrode was prepared. The sensor has excellent flexibility, high porosity and fully exposed active site. Due to these characteristics, the sensor has a sensitive response to acetone gas in the range of 250~2000 cm3/m3, and the response shows good linearity (R2=0.99659). In addition, the sensor has good cyclic response, long-term stability, and shows good selectivity for acetone among nine common volatile organic compounds. It is worth noting that due to the excellent flexibility of the fibrous gas sensitive layer ZIF-8/PAN, the response value of the sensor to acetone gas under 180° bending state is almost the same as that to acetone under 0° unbending state, and the sensor also shows a stable response to acetone after 180° bending-recovery within 200 times. Besides these excellent performances in flexibility, the use temperature of the sensor is room temperature. These characteristics make it have the development potential to combine with clothing to form a portable flexible acetone sensor.
[1] | Li, X. Q.; Zhang, L.; Yang, Z. Q.; Wang, P.; Yan, Y. F.; Ran, J. Y. Sep. Purif. Technol. 2020, 235, 116213. |
[2] | Yang, C. T.; Miao, G.; Pi, Y. H.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J. Chem. Eng. J. 2019, 370, 1128. |
[3] | Gardner, J. W.; Shin, H. W.; Hines, E. L. Sens. Actuators, B 2000, 70, 19. |
[4] | Liu, D.; Pervaiz, E.; Adimi, S.; Thomas, T.; Qu, F.; Huang, C.; Wang, R.; Jiang, H.; Yang, M. Appl. Surf. Sci. 2021, 566, 150642. |
[5] | Wang, C. X.; Cai, D. P.; Liu, B.; Li, H.; Wang, D. D.; Liu, Y.; Wang, L. L.; Wang, Y. R.; Li, Q. H.; Wang, T. H. J. Mater. Chem. A 2014, 2, 10623. |
[6] | Cavallari, M. R.; Izquierdo, J. E. E.; Braga, G. S.; Dirani, E. a. T.; Pereira-Da-Silva, M. A.; Rodríguez, E. F. G.; Fonseca, F. J. Sensors 2015, 15, 9592. |
[7] | Cao, R.; Zhao, S. Y.; Li, C. J. ACS Appl. Electron. Mater. 2019, 1, 2301. |
[8] | Zhang, X. L.; Na, J. W.; Xing, Y.; Li, C. J. Glob. Chall. 2019, 3, 1900070. |
[9] | Surya, S. G.; Bhanoth, S.; Majhi, S. M.; More, Y. D.; Teja, V. M.; Chappanda, K. N. CrystEngComm 2019, 21, 7303. |
[10] | Impeng, S.; Junkaew, A.; Maitarad, P.; Kungwan, N.; Zhang, D.; Shi, L.; Namuangruk, S. Appl. Surf. Sci. 2019, 473, 820. |
[11] | Hazra, A.; Das, S.; Kanungo, J.; Sarkar, C. K.; Basu, S. Sens. Actuators, B 2013, 183, 87. |
[12] | Paliwal, A.; Sharma, A.; Tomar, M.; Gupta, V. Sens. Actuators, B 2017, 250, 679. |
[13] | Li, Z.; Zhang, Y.; Zhang, H.; Yi, J. X. Sens. Actuators, B 2021, 344, 130182. |
[14] | Andrés, M. A.; Vijjapu, M. T.; Surya, S. G.; Shekhah, O.; Salama, K. N.; Serre, C.; Eddaoudi, M.; Roubeau, O.; Gascón, I. ACS Appl. Mater. Interfaces 2020, 12, 4155. |
[15] | Zeinali, S.; Homayoonnia, S.; Homayoonnia, G. Sens. Actuators, B 2019, 278, 153. |
[16] | Scott, A. J.; Majdabadifarahani, N.; Stewart, K. M. E.; Duever, T. A.; Penlidis, A. Macromol. React. Eng. 2020, 14, 2000004. |
[17] | Lan, K. B.; Wang, Z.; Yang, X. D.; Wei, J. Q.; Qin, Y. X.; Qin, G. X. Nanotechnology 2022, 33, 155502. |
[18] | Andrysiewicz, W.; Krzeminski, J.; Skarżynski, K.; Marszalek, K.; Sloma, M.; Rydosz, A. Electron. Mater. Lett. 2020, 16, 146. |
[19] | Zhang, L.; Guo, Y. Y. H.; Liu, G. Y.; Tan, Q. L. IEEE Access 2020, 8, 171568. |
[20] | Zhang, J. W.; Li, P.; Zhang, X. N.; Ma, X. J.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese) |
[20] | (张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.) |
[21] | Li, C.; Li, N.; Chang, L. M.; Gu, Z. G.; Zhang, J. Acta Chim. Sinica 2022, 80, 340. (in Chinese) |
[21] | (李崇, 李娜, 常立美, 谷志刚, 张健, 化学学报, 2022, 80, 340.) |
[22] | Qi, Y.; Ren, S. S.; Che, Y.; Ye, J. W.; Ning, G. L. Acta Chim. Sinica 2020, 78, 613. (in Chinese) |
[22] | (齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.) |
[23] | Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156. (in Chinese) |
[23] | (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.) |
[24] | Zhai, Z. Y.; Zhang, X. L.; Wang, J. N.; Li, H. Y.; Sun, Y. X.; Hao, X. K.; Qin, Y.; Niu, B.; Li, C. J. Chem. Eng. J. 2022, 428, 131720. |
[25] | Zhang, X. L.; Hao, X. K.; Zhai, Z. Y.; Wang, J. N.; Li, H. Y.; Sun, Y. X.; Qin, Y.; Niu, B.; Li, C. Appl. Surf. Sci. 2022, 573, 151446. |
[26] | Szilágyi, P. Á.; Westerwaal, R. J.; Van De Krol, R.; Geerlings, H.; Dam, B. J. Mater. Chem. C 2013, 1, 8146. |
[27] | Chen, B. L.; Yang, Z. X.; Zhu, Y. Q.; Xia, Y. D. J. Mater. Chem. A 2014, 2, 16811. |
[28] | Peng, L, C.; Zhang, X, L..; Sun, Y, X.; Xing, Y.; Li, C, J. Environ. Res. 2020, 188, 109742. |
[29] | Venkatesh, M. R.; Sachdeva, S.; El Mansouri, B.; Wei, J.; Bossche, A.; Bosma, D.; De Smet, L. C. P. M.; Sudhölter, E. J. R.; Zhang, G. Q. Sensors 2019, 19, 888. |
[30] | Sun, Y. X.; Zhang, X. L.; Xi, H. L.; Li, C. J. Fine Chem. 2020, 37, 1334. (in Chinese) |
[30] | (孙亚昕, 张秀玲, 习海玲, 李从举, 精细化工, 2020, 37, 1334.) |
[31] | Yao, A.; Jiao, X.; Chen, D.; Li, C. ACS Appl. Mater. Interfaces 2020, 12, 18437. |
[32] | Ma, K. K.; Wang, Y. F.; Chen, Z. J.; Islamoglu, T.; Lai, C. L.; Wang, X. W.; Fei, B.; Farha, O. K.; Xin, J. H. ACS Appl. Mater. Interfaces 2019, 11, 22714. |
[33] | Ma, K.; Idrees, K. B.; Son, F. A.; Maldonado, R.; Wasson, M. C.; Zhang, X.; Wang, X.; Shehayeb, E.; Merhi, A.; Kaafarani, B. R.; Islamoglu, T.; Xin, J. H.; Farha, O. K. Chem. Mater. 2020, 32, 7120. |
[34] | Hao, X. K.; Zhai, Z. Y.; Sun, Y. X.; Li, C. J. Acta Chim. Sincia 2022, 80, 49. (in Chinese) |
[34] | (郝肖柯, 翟振宇, 孙亚昕, 李从举, 化学学报, 2022, 80, 49.) |
[35] | Zhang, X. L.; Fan, W.; Li, H.; Zhao, S. Y.; Wang, J. N.; Wang, B.; Li, C. J. J. Mater. Chem. A 2018, 6, 21458. |
[36] | Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y.; Wang, Z. L.; Li, C. J. Nano Res. 2018, 11, 3771. |
[37] | Lee, S.; Franklin, S.; Hassani, F. A.; Yokota, T.; Someya, T. Science 2020, 370, 966. |
[38] | Homayoonnia, S.; Zeinali, S. Sens. Actuators, B 2016, 237, 776. |
[39] | Tung, T. T.; Tran, M. T.; Feller, J.-F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M. J.; Losic, D. Carbon 2020, 159, 333. |
[40] | Bahri, M.; Haghighat, F.; Kazemian, H.; Rohani, S. Chem. Eng. J. 2017, 313, 711. |
[41] | Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2006, 45, 1557. |
[42] | Shekhah, O.; Eddaoudi, M. Chem. Commun. 2013, 49, 10079. |
/
〈 |
|
〉 |