综述

胶体粒子的机械性能调控及其在药物递送中的应用

  • 高至亮 ,
  • 李梦琦 ,
  • 郝京诚 ,
  • 崔基炜
展开
  • 山东大学胶体与界面化学教育部重点实验室 济南 250100

高至亮, 博士, 2020年博士毕业于山东大学胶体与界面化学教育部重点实验室, 主要从事功能性生物高分子材料的合成、组装、物理化学性质调控及在生物医学领域的应用研究.

李梦琦, 山东大学胶体与界面化学教育部重点实验室硕博连读研究生, 研究方向为胶体粒子的可控制备、性能调控及其在生物领域中的应用.

郝京诚, 教授, 博士生导师. 1995 年博士毕业于中国科学院兰州化学物理研究所, 1997~2003 年分别在日本、德国和美国从事博士后研究, 主要研究方向是胶体与界面化学及其相关应用.

崔基炜, 教授, 博士生导师. 2010 年博士毕业于山东大学胶体与界面化学教育部重点实验室, 2010 至2016 年在墨尔本大学从事博士后研究工作. 研究领域主要包括高分子胶体、界面组装与调控、药物和疫苗递送等.

收稿日期: 2022-01-22

  网络出版日期: 2022-05-20

基金资助

国家自然科学基金(21872085); 国家自然科学基金(22102088); 山东省自然科学基金(ZR202102240400)

Tuning the Mechanical Properties of Colloid Particles for Drug Delivery

  • Zhiliang Gao ,
  • Mengqi Li ,
  • Jingcheng Hao ,
  • Jiwei Cui
Expand
  • Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100

Received date: 2022-01-22

  Online published: 2022-05-20

Supported by

National Natural Science Foundation of China(21872085); National Natural Science Foundation of China(22102088); Natural Science Foundation of Shandong Province(ZR202102240400)

摘要

胶体粒子是肿瘤治疗中最常用的载体, 尽管在过去的研究中不同的胶体粒子已经被广泛报道, 但如何进一步提高胶体粒子的药物递送效率仍然存在着一些挑战. 大量的研究表明胶体粒子的尺寸、形状、结构和表面化学等物理化学性质在药物递送过程中具有重要的作用, 但胶体粒子的机械性能对药物递送过程的影响研究和综述相对较少. 本综述从不同机械性能胶体粒子的制备与表征出发, 概述了胶体粒子的机械性能对血液循环、肿瘤富集、渗透以及细胞内化过程的影响, 并对该领域存在的问题以及发展的趋势进行了展望. 该综述有助于帮助科学工作者更好地理解胶体粒子的机械性能对药物递送的影响规律, 从而优化胶体粒子的设计并提高纳米药物的递送效率和生物利用率.

本文引用格式

高至亮 , 李梦琦 , 郝京诚 , 崔基炜 . 胶体粒子的机械性能调控及其在药物递送中的应用[J]. 化学学报, 2022 , 80(7) : 1010 -1020 . DOI: 10.6023/A22010042

Abstract

Colloidal particles are the most common carriers of anticancer drugs. Although various colloidal particles as carriers have been reported, it is still challenging to enhance the drug delivery efficacy. It has been proved that physicochemical properties (e.g., size, shape, structure, and surface chemistry) of colloidal particles play an important role in drug delivery processes, while the influence of the mechanical property of colloidal particles on the drug delivery process is rarely reported and reviewed. In this review, we summarize the preparation and characterization of colloidal particles with different mechanical properties. The influence of the mechanical properties of colloidal particles on blood circulation, tumor accumulation and penetration as well as cell internalization are also highlighted. Furthermore, the challenges and future directions in this field are discussed, which is helpful to understand the influence of mechanical property on the design of colloidal particles as carriers to improve the drug delivery efficacy and bioavailability of nanomedicines.

参考文献

[1]
Brigger, I.; Dubernet, C.; Couvreur, P. Adv. Drug Deliv. Rev. 2002, 54, 631.
[2]
Wang, A. Z.; Langer, R.; Farokhzad, O. C. Annu. Rev. Med. 2012, 63, 185.
[3]
Chen, G.; Roy, I.; Yang, C.; Prasad, P. N. Chem. Rev. 2016, 116, 2826.
[4]
Luo, Z.; Gong, P.; Sheng, Z.; Gao, G.; Zhao, P.; Zheng, M.; Cai, L.; Zhang, P. Chinese Sci. Bull. 2014, 59, 3009.
[5]
An, X. Sci. China Chem. 2015, 45, 340.
[6]
Mitragotri, S.; Burke, P. A.; Langer, R. Nat. Rev. Drug Discov. 2014, 13, 655.
[7]
Myerson, J. W.; Anselmo, A. C.; Liu, Y.; Mitragotri, S.; Eckmann, D. M.; Muzykantov, V. R. Adv. Drug Deliv. Rev. 2016, 99, 97.
[8]
Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Nat. Rev. Cancer 2017, 17, 20.
[9]
Min, Y.; Caster, J. M.; Eblan, M. J.; Wang, A. Z. Chem. Rev. 2015, 115, 11147.
[10]
Yue, H.; Ma, G. Acta Chim. Sinica 2021, 79, 1244. (in Chinese)
[10]
(岳华, 马光辉, 化学学报, 2021, 79, 1244.)
[11]
Venditto, V. J.; Szoka, F. C. Jr. Adv. Drug Deliv. Rev. 2013, 65, 80.
[12]
Liu, J.; Li, M.; Luo, Z.; Dai, L.; Guo, X.; Cai, K. Nano Today 2017, 15, 56.
[13]
Sun, Q.; Zhou, Z.; Qiu, N.; Shen, Y. Adv. Mater. 2017, 29, 1606628.
[14]
Chen, S.; Liang, X. J. Sci. China Life Sci. 2018, 61, 371.
[15]
Cui, J.; Richardson, J. J.; Bjornmalm, M.; Faria, M.; Caruso, F. Acc. Chem. Res. 2016, 49, 1139.
[16]
Albanese, A.; Tang, P. S.; Chan, W. C. Annu. Rev. Biomed. Eng. 2012, 14, 1.
[17]
Wang, J.; Mao, W.; Lock, L. L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. ACS Nano 2015, 9, 7195.
[18]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Nat. Nanotechnol. 2011, 6, 815.
[19]
Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X.; Ye, X.; Nie, S.; Wang, J. ACS Nano 2016, 10, 6753.
[20]
Sun, Q.; Ojha, T.; Kiessling, F.; Lammers, T.; Shi, Y. Biomacromolecules 2017, 18, 1449.
[21]
Wang, H.-X.; Zuo, Z.-Q.; Du, J.-Z.; Wang, Y.-C.; Sun, R.; Cao, Z.-T.; Ye, X.-D.; Wang, J.-L.; Leong, K. W.; Wang, J. Nano Today 2016, 11, 133.
[22]
Hui, Y.; Yi, X.; Hou, F.; Wibowo, D.; Zhang, F.; Zhao, D.; Gao, H.; Zhao, C. X. ACS Nano 2019, 13, 7410.
[23]
Li, M.; Gao, Z.; Cui, J. Langmuir 2022, 38, 6780.
[24]
Li, Z.; Xiao, C.; Yong, T.; Li, Z.; Gan, L.; Yang, X. Chem. Soc. Rev. 2020, 49, 2273.
[25]
Plamper, F. A.; Richtering, W. Acc. Chem. Res. 2017, 50, 131.
[26]
Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Adv. Mater. 2006, 18, 1345.
[27]
Anselmo, A. C.; Zhang, M.; Kumar, S.; Vogus, D. R.; Menegatti, S.; Helgeson, M. E.; Mitragotri, S. ACS Nano 2015, 9, 3169.
[28]
Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderon, M. Chem. Soc. Rev. 2015, 44, 6161.
[29]
Wang, Y.; Guo, L.; Dong, S.; Cui, J.; Hao, J. Adv. Colloid Interface Sci. 2019, 266, 1.
[30]
Song, D.; Cui, J.; Ju, Y.; Faria, M.; Sun, H.; Howard, C. B.; Thurecht, K. J.; Caruso, F. ACS Appl. Mater. Interfaces 2019, 11, 28720.
[31]
Cui, J.; Alt, K.; Ju, Y.; Gunawan, S. T.; Braunger, J. A.; Wang, T. Y.; Dai, Y.; Dai, Q.; Richardson, J. J.; Guo, J.; Bjornmalm, M.; Hagemeyer, C. E.; Caruso, F. Biomacromolecules 2019, 20, 3592.
[32]
Best, J. P.; Cui, J.; Mullner, M.; Caruso, F. Langmuir 2013, 29, 9824.
[33]
Cui, J.; De Rose, R.; Best, J. P.; Johnston, A. P.; Alcantara, S.; Liang, K.; Such, G. K.; Kent, S. J.; Caruso, F. Adv. Mater. 2013, 25, 3468.
[34]
Cui, J.; Bjornmalm, M.; Liang, K.; Xu, C.; Best, J. P.; Zhang, X.; Caruso, F. Adv. Mater. 2014, 26, 7295.
[35]
Cui, J.; Wang, Y.; Postma, A.; Hao, J.; Hosta-Rigau, L.; Caruso, F. Adv. Funct. Mater. 2010, 20, 1625.
[36]
Zhang, L.; Cao, Z.; Li, Y.; Ella-Menye, J.-R.; Bai, T.; Jiang, S. ACS Nano 2012, 6, 6681.
[37]
Key, J.; Palange, A. L.; Gentile, F.; Aryal, S.; Stigliano, C.; Mascolo, D. D.; Rosa, E. D.; Cho, M.; Lee, Y.; Singh, J.; Decuzzi, P. ACS Nano 2015, 9, 11628.
[38]
Merkel, T. J.; Jones, S. W.; Herlihy, K. P.; Kersey, F. R.; Shields, A. R.; Napier, M.; Luft, J. C.; Wu, H.; Zamboni, W. C.; Wang, A. Z.; Bear, J. E.; DeSimone, J. M. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 586.
[39]
Gaitzsch, J.; Huang, X.; Voit, B. Chem. Rev. 2016, 116, 1053.
[40]
Delcea, M.; Mohwald, H.; Skirtach, A. G. Adv. Drug Deliv. Rev. 2011, 63, 730.
[41]
Wang, Q.; Gao, Z.; Zhao, K.; Zhang, P.; Zhong, Q.-Z.; Yu, Q.; Zhai, S.; Cui, J. Chin. Chem. Lett. 2022, 33, 1917.
[42]
Mertz, D.; Cui, J.; Yan, Y.; Devlin, G.; Chaubaroux, C.; AlexandreDochter; RoxaneAlles; Lavalle, P.; Voegel, J. C.; Blencowe, A.; Auffinger, P.; Caruso, F. ACS Nano 2012, 6, 7584.
[43]
Richardson, J. J.; Cui, J.; Bjornmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F. Chem. Rev. 2016, 116, 14828.
[44]
Richardson, J. J.; Bjornmalm, M.; Caruso, F. Science 2015, 348, aaa2491.
[45]
Hui, Y.; Wibowo, D.; Liu, Y.; Ran, R.; Wang, H. F.; Seth, A.; Middelberg, A. P. J.; Zhao, C. X. ACS Nano 2018, 12, 2846.
[46]
Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; Koeverden, M. P. v.; Such, G. K.; Cui, J.; Caruso, F. Science 2013, 341, 154.
[47]
Guo, J.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C. E.; Caruso, F. Angew. Chem. Int. Ed. 2014, 53, 5546.
[48]
Rahim, M. A.; Bjornmalm, M.; Bertleff-Zieschang, N.; Ju, Y.; Mettu, S.; Leeming, M. G.; Caruso, F. ACS Appl. Mater. Interfaces 2018, 10, 7632.
[49]
Lin, G.; Rahim, M. A.; Leeming, M. G.; Cortez-Jugo, C.; Besford, Q. A.; Ju, Y.; Zhong, Q. Z.; Johnston, S. T.; Zhou, J.; Caruso, F. ACS Appl. Mater. Interfaces 2019, 11, 17714.
[50]
Pei, H.; Bai, Y.; Guo, J.; Gao, Z.; Dai, Q.; Yu, Q.; Cui, J. Chin. Chem. Lett. 2020, 31, 505.
[51]
Cai, Z.; Zhang, Y.; Jiang, L.; Zhu, J. Acta Chim. Sinica 2021, 79, 481. (in Chinese)
[51]
(蔡政, 张颖雯, 姜立萍, 朱俊杰, 化学学报, 2021, 79, 481.)
[52]
Dai, Z.; Yu, M.; Yi, X.; Wu, Z.; Tian, F.; Miao, Y.; Song, W.; He, S.; Ahmad, E.; Guo, S.; Zhu, C.; Zhang, X.; Li, Y.; Shi, X.; Wang, R.; Gan, Y. ACS Nano 2019, 13, 7676.
[53]
Zhang, L.; Feng, Q.; Wang, J.; Zhang, S.; Ding, B.; Wei, Y.; Dong, M.; Ryu, J.-Y.; Yoon, T.-Y.; Shi, X.; Sun, J.; Jiang, X. ACS Nano 2015, 9, 9912.
[54]
Sun, J.; Zhang, L.; Wang, J.; Feng, Q.; Liu, D.; Yin, Q.; Xu, D.; Wei, Y.; Ding, B.; Shi, X.; Jiang, X. Adv. Mater. 2015, 27, 1402.
[55]
Yu, M.; Xu, L.; Tian, F.; Su, Q.; Zheng, N.; Yang, Y.; Wang, J.; Wang, A.; Zhu, C.; Guo, S.; Zhang, X.; Gan, Y.; Shi, X.; Gao, H. Nat. Commun. 2018, 9, 2607.
[56]
Guo, P.; Liu, D.; Subramanyam, K.; Wang, B.; Yang, J.; Huang, J.; Auguste, D. T.; Moses, M. A. Nat. Commun. 2018, 9, 130.
[57]
Bippes, C. A.; Muller, D. J. Rep. Prog. Phys. 2011, 74, 086601.
[58]
Cappella, B.; Dietler, G. Surf. Sci. Rep. 1999, 34, 1.
[59]
Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; Solgaard, O. Nat. Nanotechnol. 2007, 2, 507.
[60]
Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nat. Nanotechnol. 2007, 2, 751.
[61]
Petros, R. A.; DeSimone, J. M. Nat. Rev. Drug Discov. 2010, 9, 615.
[62]
Dai, Q.; Bertleff-Zieschang, N.; Braunger, J. A.; Bjornmalm, M.; Cortez-Jugo, C.; Caruso, F. Adv. Healthc. Mater. 2018, 7, 1700575.
[63]
Cai, R.; Chen, C. Adv. Mater. 2019, 31, e1805740.
[64]
Nance, E.; Zhang, X. C.; Shih, T.-Y.; Xu, Q.; Schuster, B. S.; Hanes, J. ACS Nano 2014, 8, 10655.
[65]
Liu, W.; Zhou, X.; Mao, Z.; Yu, D.; Wang, B.; Gao, C. Soft Matter 2012, 8, 9235.
[66]
Palomba, R.; Palange, A. L.; Rizzuti, I. F.; Ferreira, M.; Cervadoro, A.; Barbato, M. G.; Canale, C.; Decuzzi, P. ACS Nano 2018, 12, 1433.
[67]
Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B.; Carroll, N. J.; Jiang, X.; Dunphy, D. R.; Willman, C. L.; Petsev, D. N.; Evans, D. G.; Parikh, A. N.; Chackerian, B.; Wharton, W.; Peabody, D. S.; Brinker, C. J. Nat. Mater. 2011, 10, 389.
[68]
Hu, C.-M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10980.
[69]
Su, Y.; Xie, Z.; Kim, G. B.; Dong, C.; Yang, J. ACS Biomater. Sci. Eng. 2015, 1, 201.
[70]
Liang, Q.; Bie, N.; Yong, T.; Tang, K.; Shi, X.; Wei, Z.; Jia, H.; Zhang, X.; Zhao, H.; Huang, W.; Gan, L.; Huang, B.; Yang, X. Nat. Biomed. Eng. 2019, 3, 729.
[71]
Torchilin, V. Adv. Drug Deliv. Rev. 2011, 63, 131.
[72]
Cui, J.; Rose, R. D.; Alt, K.; Alcantara, S.; Paterson, B. M.; Liang, K.; Hu, M.; Richardson, J. J.; Yan, Y.; Jeffery, C. M.; Price, R. I.; Peter, K.; Hagemeyer, C. E.; Donnelly, P. S.; Kent, S. J.; Caruso, F. ACS Nano 2015, 9, 1571.
[73]
Shukla, S.; Eber, F. J.; Nagarajan, A. S.; DiFranco, N. A.; Schmidt, N.; Wen, A. M.; Eiben, S.; Twyman, R. M.; Wege, C.; Steinmetz, N. F. Adv. Healthc. Mater. 2015, 4, 874.
[74]
Wang, G.; Chen, Y.; Wang, P.; Wang, Y.; Hong, H.; Li, Y.; Qian, J.; Yuan, Y.; Yu, B.; Liu, C. Acta Biomater. 2016, 29, 248.
[75]
Sun, Q.; Sun, X.; Ma, X.; Zhou, Z.; Jin, E.; Zhang, B.; Shen, Y.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R.; Lodge, T. P.; Radosz, M.; Zhao, Y. Adv. Mater. 2014, 26, 7615.
[76]
Ruan, S.; Cao, X.; Cun, X.; Hu, G.; Zhou, Y.; Zhang, Y.; Lu, L.; He, Q.; Gao, H. Biomaterials 2015, 60, 100.
[77]
Popovic, Z.; Liu, W.; Chauhan, V. P.; Lee, J.; Wong, C.; Greytak, A. B.; Insin, N.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Angew. Chem. Int. Ed. 2010, 49, 8649.
[78]
Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S.; Wang, J. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 4164.
[79]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Chem. Soc. Rev. 2017, 46, 4218.
[80]
Stern, T.; Kaner, I.; Laser Zer, N.; Shoval, H.; Dror, D.; Manevitch, Z.; Chai, L.; Brill-Karniely, Y.; Benny, O. J. Control. Release 2017, 257, 40.
[81]
Sun, H.; Wong, E. H. H.; Yan, Y.; Cui, J.; Dai, Q.; Guo, J.; Qiao, G. G.; Caruso, F. Chem. Sci. 2015, 6, 3505.
[82]
Gu, R.; Mao, J.; Yan, L.-T. ACS Nano 2013, 7, 10646.
[83]
Zhang, W.; Han, B.; Lai, X.; Xiao, C.; Xu, S.; Meng, X.; Li, Z.; Meng, J.; Wen, T.; Yang, X.; Liu, J.; Xu, H. Chem. Commun. 2020, 56, 1255.
文章导航

/