过渡金属催化的1,2,3-三氮唑导向的C—H键官能团化反应研究进展
收稿日期: 2022-04-02
网络出版日期: 2022-05-26
基金资助
江苏开放大学国家级预研(19GY-Z-03)
Transition-metal Catalyzed 1,2,3-Triazole-assisted C—H Functionalization Processes
Received date: 2022-04-02
Online published: 2022-05-26
Supported by
National Advance Research Program of Jiangsu Open University(19GY-Z-03)
1,2,3-三氮唑化合物是一类具有重要生理活性的含氮杂环化合物, 其在医药、农药、材料科学等领域都具有广泛的应用. 不断开发基于三氮唑骨架的新型结构, 寻找新型高效的合成三氮唑衍生物的方法具有重要的意义和应用价值. 过渡金属催化的C—H键活化策略具有操作简便、效率高、三废少等优点, 是现代有机合成中高效构筑C—C键和C—X键的强大工具. 近年来, 过渡金属催化的三氮唑导向的C—H官能团化反应受到科学工作者的广泛关注, 该方法以不同结构的1,2,3-三氮唑作为导向基团, 在不同反应条件下通过直接活化C—H键来构建新的C—C键和C—X键, 高效合成复杂的三氮唑衍生物. 综述了近年来1,2,3-三氮唑导向下过渡金属催化的C—H键官能团化反应研究进展, 按照成键类型(碳-碳键、碳-杂键以及环化反应)对这些反应进行了梳理和总结, 并对今后该领域的发展进行了展望.
刘霞 , 匡春香 , 苏长会 . 过渡金属催化的1,2,3-三氮唑导向的C—H键官能团化反应研究进展[J]. 化学学报, 2022 , 80(8) : 1135 -1151 . DOI: 10.6023/A22040147
1,2,3-Triazole derivatives are a kind of N-containing heterocyclic compounds with important biological activities, which have widespread applications in diverse fields such as pharmaceuticals, pesticides, and materials. Therefore, it is of great significance to continuously develop new structures based on triazole framework and to find new and efficient synthetic methods of triazole derivatives. Although 1,2,3-triazole compounds are widely used, there is no report that 1,2,3-triazole compounds directly come from natural products. All of 1,2,3-triazoles and their dirivatives are artificially synthesized by chemical methods. Various strategies for their synthesis have been devised, with Huisgen 1,3-dipolar [3+2] cycloadditions of azides and alkynes being the most commonly used approach. However, this methodology, in most cases, leads to the formation of a mixture of regioisomeric products and requires the presence of a strong electron-withdrawing substitutent at the alkyne. Later, Fokin and Sharpless reported Cu(I)-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. This “click” reaction proceeded highly regioselectively when using terminal alkynes affording 1,4-disubstituted 1,2,3-triazoles in excellent yield. In recent years, transition-metal catalyzed C—H bond activation has attracted attention from scientists worldwide, and has become an important protocol for the construction of carbon-carbon bonds and carbon-heteroatom bonds in organic synthesis owing to its facile manipulation, high efficiency and less waste. An important strategy to realize the regioselectivity of the C—H activation is to use the auxiliary function of the directing group. Recently, transition-metal catalyzed 1,2,3-triazole-assisted C—H functionalization has been widely concerned by scientists. In this stragety, 1,2, 3-triazoles with different structures were used as guiding groups to construct new C—C and C—X bonds by direct conversion of C—H bonds under different reaction conditions to access more complex triazoles since many simple triazoles can be easily obtained via click reaction. In this perspective article, we will briefly summarize the advance in the field of transition-metal catalyzed 1,2,3-triazole-assisted C—H functionalization according to the bonding type, including carbon-carbon bond, carbon-heteroatom bond and annulation. The advantages and disadvantages of different kinds of directing groups are discussed. Meanwhile, pathways for future development have been proposed.
[1] | (a) Chabre, Y. M.; Roy, R. Curr. Top. Med. Chem. 2008, 8, 1237. |
[1] | (b) Kolb, H. C.; Sharpless, K. B. Drug Discov. Today. 2003, 8, 1128. |
[1] | (c) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. |
[1] | (d) Baxter, C. A.; Cleator, E.; Brands, K. M. J.; Edwards, J. S.; Reamer, R. A.; Sheen, F. J.; Stewart, G. W.; Strotman, N. A.; Wallace, D. J. Org. Process. Res. Dev. 2011, 15, 367. |
[1] | (e) Jia, Z. J.; Venkatar-amani, C.; Huang, W.; Mehrotra, M.; Song, Y.; Xu, Q.; Bauer, S. M.; Pandey, A. WO 2009136995, 2009. |
[1] | (f) Watanabe, T.; Umezawa, Y.; Takahashi, Y.; Akamatsu, Y. Bioorg. Med. Chem. Lett. 2010, 20, 5807. |
[2] | (a) Sandip, G. A.; Suleman, R. M.; Vandana, S. P. Chem. Asian. J. 2011, 6, 2696. |
[2] | (b) Silvana, R.; Andrijana, M. Curr. Med. Chem. 2015, 22, 1462. |
[2] | (c) Keri, R.S.; Patil, S. A. Budagumpi, S.; Nagaraja, B. M. Chem. Biol. Drug. Des. 2015, 86, 410. |
[2] | (d) Li, L.; Zhang, Z. Molecules 2016, 21, 1393. |
[2] | (e) Schulzeab, B.; Schubert, U. S. Chem. Soc. Rev. 2014, 43, 2522. |
[3] | Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565. |
[4] | (a) Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int Ed. 2002, 41, 2110. |
[4] | (b) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K.B Angew. Chem., Int Ed. 2002, 41, 1053. |
[5] | (a) Liu, Z.; Li, S.; Li, G.; Sharpless, K. B.; Wu, Peng. J. Am. Chem. Soc. 2018, 140, 2919. |
[5] | (b) Wang, C.; Zhou, F.; Zhou, J. Chin. J. Org. Chem. 2020, 40, 3065. (in Chinese) |
[5] | (王才, 周锋, 周剑, 有机化学, 2020, 40, 3065.) |
[5] | (c) Liu, X.; Su, C. Synth. Commun. 2017, 47, 279. |
[6] | (a) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B. Chem. Rev. 2021, 121, 14957. |
[6] | (b) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788. |
[6] | (c) Shabani, S.; Wu, Y.; Ryan, H. G.; Hutton, C. A. Chem. Soc. Rev. 2021, 50, 9278. |
[7] | (a) Han, G.; Xu, H.; Hou, W. Chin. J. Org. Chem. 2022, 42, 391. (in Chinese) |
[7] | (韩高旭, 许红涛, 侯卫, 有机化学, 2022, 42, 391.) |
[7] | (b) Hou, Y.; Hu, X. Chin. J. Org. Chem. 2021, 41, 2920. (in Chinese) |
[7] | (侯业星, 胡小强, 有机化学, 2021, 41, 2920.) |
[7] | (c) Shang, X.; Liu, Z. Acta Chim. Sinica 2015, 73, 1275. (in Chinese) |
[7] | (尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.) |
[8] | Ohta, S.; Kawasaki, I.; Uemura, T.; Yanashita, M.; Yoshioka, T.; Yamaguchi, S. Chem. Pharm. Bull. 1997, 45, 1140. |
[9] | Chuprakov, S.; Natalia Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333. |
[10] | Ackermann, L.; Vicente, R.; Born, R. Adv. Synth. Catal. 2008, 350, 741. |
[11] | Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081. |
[12] | Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int Ed. 2009, 48, 201. |
[13] | Punzi, A.; Zappimbulso, N.; Farinola, G. M. Eur. J. Org. Chem. 2020, 3229. |
[14] | Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. |
[15] | Ackermann, L.; Born, R.; Vicente, R. ChemSusChem 2009, 2, 546. |
[16] | Ackermann, L.; Vicente, R. Org. Lett. 2009, 11, 4922. |
[17] | Zhao, F.; Liu, Y.; Yang, S.; Xie, K.; Jiang, Y. Org. Chem. Front. 2017, 4, 1112. |
[18] | Oi, S.; Sasamoto, H.; Funayama, R.; Inoue, Y. Chem. Lett. 2008, 37, 994. |
[19] | Shi, S.; Liu, W.; He, P.; Kuang, C. Org. Biomol. Chem. 2014, 12, 3576. |
[20] | Gu, Q.; Al Mamari, H. H.; Graczyk, K.; Diers, E.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 3868. |
[21] | Al Mamari, H. H.; Diers, E.; Ackermann, L. Chemistry 2014, 20, 9739. |
[22] | Zhang, G.; Xie, X.; Zhu, J.; Li, S.; Ding, C.; Ding, P. Org. Biomol. Chem. 2015, 13, 5444. |
[23] | Xie, X.; Xing, Y.; Zhang, G.; Ding, C. Chin. J. Org. Chem. 2017, 37, 2124. (in Chinese) |
[23] | (谢晓强, 邢运哲, 张国富, 丁成荣, 有机化学, 2017, 37, 2124.) |
[24] | Wang, W.; Lorion, M. M.; Martinazzoli, O.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 10554. |
[25] | Jiang, H.; Feng, Z.; Wang, A.; Liu, X.; Chen, Z. Eur. J. Org. Chem. 2010, 2010, 1227. |
[26] | Yu, X.; Huang, Z.; Liu, W.; Shi, S.; Kuang, C. Org. Biomol. Chem. 2015, 13, 4459. |
[27] | Tirler, C.; Ackermann, L. Tetrahedron 2015, 71, 4543. |
[28] | He, P.; Tian, Q.; Kuang, C. Org. Biomol. Chem. 2015, 13, 7146. |
[29] | Ye, X.; Shi, X. Org. Lett. 2014, 16, 4448. |
[30] | Ye, X.; Zhang, Y.; He, Y., Shi, X. Tetrahedron 2016, 72, 2756. |
[31] | Li, X. G.; Liu, K.; Zou, G.; Liu, P. N. Eur. J. Org. Chem. 2014, 2014, 7878. |
[32] | Zhao, S.; Yu, R.; Chen, W.; Liu, M.; Wu, H. Org. Lett. 2015, 17, 2828. |
[33] | Ye, X.; Xu, C.; Wojtas, L.; Akhmedov, N. G.; Chen, H.; Shi, X. Org. Lett. 2016, 18, 2970. |
[34] | Graczyk, K.; Haven, T.; Ackermann, L. Chem. Eur. J. 2015, 21, 8812. |
[35] | Cera, G.; Haven, T.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 1484. |
[36] | Liu, W.; Cera, G.; Oliveira, J. C. A.; Shen, Z.; Ackermann, L. Chem. Eur. J. 2017, 23, 11524. |
[37] | Wang, H.; Yi, X.; Cui, Y.; Chen, W. Org. Biomol. Chem. 2018, 16, 8191. |
[38] | Yu, Z.; Zhang, C.; Li, J.; Liu, Y.; Yu, X.; Guo, L.; Li, G.; Wu, Y. Tetrahedron Lett. 2018, 59, 2816. |
[39] | Chevallier, F.; Blin, T.; Nagaradja, E.; Lassagne, F.; Roisnel, T.; Halauko, Y. S.; Matulis, V. E.; Ivashkevich, O. A.; Mongin, F. Org. Biomol. Chem. 2012, 10, 4878. |
[40] | (a) Tian, Q.; He, P.; Kuang, C. Org. Biomol. Chem. 2014, 12, 7474. |
[40] | (b) Wang, Z.; Tian, Q.; Yu, X.; Kuang, C. Adv. Synth. Catal. 2014, 356, 961. |
[41] | Zhao, F.; Chen, Z.; Liu, Y.; Xie, K.; Jiang, Y. Eur. J. Org. Chem. 2016, 2016, 5971. |
[42] | Ma, X.; Huang, H.; Yang, J.; Feng, X.; Xie, K. Synthesis 2018, 50, 2567. |
[43] | Haito, A.; Yamaguchi, M.; Chatani, N. Asian J. Org. Chem. 2018, 7, 1315. |
[44] | Shi, S.; Kuang, C. J. Org. Chem. 2014, 79, 6105. |
[45] | Wang, Z.; Kuang, C. Adv. Synth. Catal. 2014, 356, 1549. |
[46] | Irastorza, A.; Aizpurua, J. M.; Correa, A. Org. Lett. 2016, 18, 1080. |
[47] | Zhao, F.; Chen, Z.; Ma, X.; Huang, S.; Jiang, Y. Tetrahedron. Lett. 2017, 58, 614. |
[48] | Ren, Y.; Liu, Y.; Gao, S.; Dong, X.; Xiao, T.; Jiang, Y. Tetrahedron 2020, 76, 130985. |
[49] | Fu, X.; Zhao, F.; Zhao, L.; Liu, Y.; Luo, F.; Jiang, Y. Synth. Commun. 2017, 47, 2305. |
[50] | Wu, F.; Zhao, Y.; Chen, W. Tetrahedron 2016, 72, 8004. |
[51] | Wang, X.; Zhang, C.; Li, J.; Jiang, C.; Su, F.; Zhan, Z.; Hai, L.; Chen, Z.; Wu, Y. RSC Adv. 2016, 6, 68929. |
[52] | Jiang, Y.; Zhao, F.; Chen, Z.; Huang, S. Synthesis 2016, 48, 2105. |
[53] | Tian, Q.; Chen, X.; Liu, W.; Wang, Z.; Shi, S.; Kuang, C. Org. Biomol. Chem. 2013, 11, 7830. |
[54] | Goitia, A.; Gomez-Bengoa, E.; Correa, A. Org. Lett. 2017, 19, 962. |
[55] | Ye, X.; He, Z.; Ahmed, T.; Weise, K.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Chem. Sci. 2013, 4, 3712. |
[56] | (a) Ma, X.; Mo, Q.; Chang, J.; Xie, K. Synth. Commun. 2018, 48, 1403. |
[56] | (b) Li, J.; Du, L.; Gu, H. J. Org. Chem. 2015, 80, 10965. |
[57] | Cera, G.; Haven, T.; Ackermann, L. Chem. Eur. J. 2017, 23, 3577. |
[58] | Mo, J.; Muller, T.; Oliveira, J. C. A.; Demeshko, S.; Meyer, F.; Ackermann, L. Angew. Chem., Int. Ed. 2019, 58, 12874. |
[59] | Ferlin, F.; Yetra, S. R.; Warratz, S.; Vaccaro, L.; Ackermann, L. Chem. Eur. J. 2019, 25, 11427. |
[60] | Jiang, Y.; Liu, Y.; Zhang, W.; Xie, K. Synlett 2017, 28, 1496. |
[61] | Yang, J.; Xiong, S.; Ren, Y.; Xiao, T.; Jiang, Y. Org. Biomol. Chem. 2020, 18, 7174. |
[62] | Ma, X.; Li, H.; Xin, H.; Du, W.; Anderson, E. A.; Dong, X.; Jiang, Y. Org. Lett. 2020, 22, 5320. |
[63] | Du, W.; Huang, H.; Xiao, T.; Jiang, Y. Adv. Synth. Catal. 2020, 362, 5124. |
/
〈 |
|
〉 |