综述

金属有机框架在气体预富集、预分离及检测中的应用

  • 闫续 ,
  • 屈贺幂 ,
  • 常烨 ,
  • 段学欣
展开
  • a 天津大学精密仪器与光电子工程学院 天津 300072
    b 天津大学精密测试技术及仪器国家重点实验室 天津 300072

闫续, 博士在读, 2013年本科毕业于南开大学, 2016年硕士毕业于南开大学, 目前在天津大学精仪学院微机电系统(MEMS)实验室开展研究工作, 研究方向是微型气体传感器的开发以及金属有机框架材料在气体检测中的应用.

屈贺幂, 博士, 2004年本科毕业于湖南大学, 2007年硕士毕业于湖南大学, 2011年博士毕业于新加坡国立大学. 2014年加入天津大学MEMS实验室开展研究工作, 研究方向是用于气体传感器的敏感材料的开发以及气体检测设备的小型化.

常烨, 博士, 2013年本科毕业于天津大学, 2018年博士毕业于天津大学. 2018年加入天津大学MEMS实验室开展研究工作, 研究方向是薄膜体声波谐振器(FBAR)化学传感器和微/纳器件的化学功能化修饰.

段学欣, 天津大学教授, 博士生导师, 2001年本科毕业于南开大学, 2004年硕士毕业于南开大学, 2010年博士毕业于荷兰特温特大学. 2013年加入天津大学MEMS实验室开展研究工作, 研究方向是MEMS/NEMS器件的开发、微系统和微流体以及它们在化学、生物学、医学和环境科学中的应用.

收稿日期: 2022-03-29

  网络出版日期: 2022-05-26

Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection

  • Xu Yan ,
  • Hemi Qu ,
  • Ye Chang ,
  • Xuexin Duan
Expand
  • a College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072
    b State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072

Received date: 2022-03-29

  Online published: 2022-05-26

摘要

气体分离和检测技术与人们日常的生产生活密切相关, 随着各种检测设备的出现, 该领域在近几十年来得以快速发展. 敏感材料在气体的分离和检测过程中发挥着至关重要的作用. 相比于传统气敏材料, 金属有机框架作为一类新型多孔材料, 具有超大的比表面积和极高的孔隙率, 并且孔道结构规整、孔径大小可调控. 这些独有的优势使它们特别适合作为候选材料应用于气体的预富集、分离和检测中, 从而实现低浓度目标气体的收集浓缩、复杂气体混合物的高效分离, 以及痕量被测气体的可靠检测, 最终实现检测能力和分离效率的大幅度提升. 因此, 金属有机框架被认为有望超越传统的气体吸附材料, 而它们在气体分离与检测中的应用值得引起学术界和工业界的重点关注.

本文引用格式

闫续 , 屈贺幂 , 常烨 , 段学欣 . 金属有机框架在气体预富集、预分离及检测中的应用[J]. 化学学报, 2022 , 80(8) : 1183 -1202 . DOI: 10.6023/A22030134

Abstract

Gas separation and detection technology is closely related to people’s daily production and life. With the emergence of various detection equipment, it has made remarkable progress in recent decades. Gas sensing materials play an important role in the process of gas separation and detection. Compared with traditional gas sensing materials, metal-organic frameworks (MOFs), as a new type of porous materials, has ultra-large surface area, extremely high porosity, regular pore structure and adjustable pore size. These unique advantages make MOFs particularly suitable as promising candidates for the gas pre-concentration, pre-separation and detection, so as to realize the collection and enhancement of low concentration gas, the separation of complex gas mixtures, and the reliable detection of trace target gases. The detection ability and separation efficiency are greatly improved eventually. Therefore, MOFs are expected to surpass the traditional materials, and their application in gas separation and detection deserves the attention of both academia and industry.

参考文献

[1]
Bushdid, C.; Magnasco, M. O.; Vosshall, L. B.; Keller, A. Science 2014, 343, 1370.
[2]
Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. Sensors 2012, 12, 9635.
[3]
Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Sensors 2017, 17, 1520.
[4]
Regmi, B. P.; Agah, M. Anal. Chem. 2018, 90, 13133.
[5]
Hu, W.; Wan, L.; Jian, Y.; Ren, C.; Jin, K.; Su, X.; Bai, X.; Haick, H.; Yao, M.; Wu, W. Adv. Mater. Technol. 2019, 4, 1800488.
[6]
Voiculescu, I.; Zaghloul, M.; Narasimhan, N. TrAC, Trends Anal. Chem. 2008, 27, 327.
[7]
Lahlou, H.; Vilanova, X.; Correig, X. Sens. Actuators, B 2013, 176, 198.
[8]
Gillanders, R. N.; Glackin, J. M. E.; Filipi, J.; Kezic, N.; Samuel, I. D. W.; Turnbull, G. A. Sci. Total Environ. 2019, 658, 650.
[9]
Radadia, A. D.; Masel, R. I.; Shannon, M. A.; Jerrell, J. P. Cadwallader, K. R. Anal. Chem. 2008, 80, 4087.
[10]
Zareian-Jahromi, M. A.; Agah, M. J. Microelectromech. Syst. 2010, 19, 294.
[11]
Serrano, G.; Paul, D.; Kim, S.-J.; Kurabayashi, K.; Zellers, E. T. Anal. Chem. 2012, 84, 6973.
[12]
Whiting, J. J.; Myers, E.; Manginell, R. P.; Moorman, M. W.; Anderson, J.; Fix, C. S.; Washburn, C.; Staton, A.; Porter, D.; Graf, D.; Wheeler, D. R.; Howell, S.; Richards, J.; Monteith, H.; Achyuthan, K. E.; Roukes, M.; Simonson, R. J. Lab Chip 2019, 19, 1633.
[13]
Rydosz, A. Sensors 2018, 18, 2298.
[14]
Alrammouz, R.; Podlecki, J.; Abboud, P.; Sorli, B.; Habchi, R. Sens. Actuators, A 2018, 284, 209.
[15]
Hunter, G. W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P. D.; Johnson, K.; Liu, C.-C.; Miller, D.; Oralkan, O.; Hesketh, P. J.; Manickam, P.; Vander Wal, R. L. J. Electrochem. Soc. 2020, 167, 037570.
[16]
Wei-Cheng, T.; Pang, S. W.; Chia-Jung, L.; Zellers, E. T. J. Microelectromech. Syst. 2003, 12, 264.
[17]
Alfeeli, B.; Cho, D.; Ashraf-Khorassani, M.; Taylor, L. T.; Agah, M. Sens. Actuators, B 2008, 133, 24.
[18]
Manginell, R. P.; Adkins, D. R.; Moorman, M. W.; Hadizadeh, R.; Copic, D.; Porter, D. A.; Anderson, J. M.; Hietala, V. M.; Bryan, J. R.; Wheeler, D. R.; Pfeifer, K. B.; Rumpf, A. J. Microelectromech. Syst. 2008, 17, 1396.
[19]
Ali, S.; Ashraf-Khorassani, M.; Taylor, L.; T. Agah, M. Sens. Actuators, B 2009, 141, 309.
[20]
Collin, W. R.; Bondy, A.; Paul, D.; Kurabayashi, K.; Zellers, E. T. Anal. Chem. 2015, 87, 1630.
[21]
Collin, W. R.; Nuñovero, N.; Paul, D.; Kurabayashi, K.; Zellers, E. T. J. Chromatogr. A 2016, 1444, 114.
[22]
Qu, H.; Duan, X. Sci. China Mater. 2019, 62, 611.
[23]
Ollé, E. P.; Farré-Lladós, J.; Casals-Terré, J. Sensors 2020, 20, 5478.
[24]
Lu, C.-J.; Steinecker, W. H.; Tian, W.-C.; Oborny, M. C.; Nichols, J. M.; Agah, M.; Potkay, J. A.; Chan, H. K. L.; Driscoll, J.; Sacks, R. D.; Wise, K. D.; Pang, S. W.; Zellers, E. T. Lab Chip 2005, 5, 1123.
[25]
Akbar, M.; Restaino, M.; Agah, M. Microsyst. Nanoeng. 2015, 1, 15039.
[26]
Garg, A.; Akbar, M.; Vejerano, E.; Narayanan, S.; Nazhandali, L.; Marr, L. C.; Agah, M. Sens. Actuators, B 2015, 212, 145.
[27]
Wang, J.; Bryant-Genevier, J.; Nuñovero, N.; Zhang, C.; Kraay, B.; Zhan, C.; Scholten, K.; Nidetz, R.; Buggaveeti, S.; Zellers, E. T. Microsyst. Nanoeng. 2018, 4, 17101.
[28]
Wang, J.; Nuñovero, N.; Nidetz, R.; Peterson, S. J.; Brookover, B. M.; Steinecker, W. H.; Zellers, E. T. Anal. Chem. 2019, 91, 4747.
[29]
Groves, W. A.; Zellers, E. T.; Frye, G. C. Anal. Chim. Acta 1998, 371, 131.
[30]
Alfeeli, B.; Taylor, L. T.; Agah, M. Microchem. J. 2010, 95, 259.
[31]
Camara, E. H. M.; Breuil, P.; Briand, D.; de Rooij, N. F.; Pijolat, C. Anal. Chim. Acta 2011, 688, 175.
[32]
Chidambaram, A.; Stylianou, K. C. Inorg. Chem. Front. 2018, 5, 979.
[33]
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.
[34]
Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113. (in Chinese)
[34]
(黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[35]
Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica. 2017, 75, 841. (in Chinese)
[35]
(张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[36]
Zeng, J. Y.; Wang, X. S.; Zhang, Z. X.; Zhuo, R. X. Acta Chim. Sinica. 2019, 77, 1156. (in Chinese)
[36]
(曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[37]
Zhang, J. W.; Li, P.; Zhang, X. N.; Ma, X. J.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese)
[37]
(张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.)
[38]
Lv, L. Q.; Zhao, Y. L.; Wei, Y. Y.; Wang, H. H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[38]
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
[39]
Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5700.
[40]
Furukawa, H.; Cordova Kyle, E.; O’Keeffe, M.; Yaghi Omar, M. Science 2013, 341, 1230444.
[41]
Wales, D. J.; Grand, J.; Ting, V. P.; Burke, R. D.; Edler, K. J.; Bowen, C. R.; Mintova, S.; Burrows, A. D. Chem. Soc. Rev. 2015, 44, 4290.
[42]
Harper, M. J. Chromatogr. A 2000, 885, 129.
[43]
Yang, X.; Yi, H.; Tang, X.; Zhao, S.; Yang, Z.; Ma, Y.; Feng, T.; Cui, X. J. Environ. Sci. 2018, 67, 104.
[44]
Zhu, L.; Shen, D.; Luo, K. H. J. Hazard. Mater. 2020, 389, 122102.
[45]
Vikrant, K.; Cho, M.; Khan, A.; Kim, K.-H.; Ahn, W.-S.; Kwon, E. E. Environ. Res. 2019, 178, 108672.
[46]
Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Microporous Mesoporous Mater. 2009, 117, 406.
[47]
Saha, D.; Bao, Z.; Jia, F.; Deng, S. Environ. Sci. Technol. 2010, 44, 1820.
[48]
Lv, Y.; Yu, H.; Xu, P.; Xu, J.; Li, X. Sens. Actuators, B 2018, 256, 639.
[49]
Saha, D.; Deng, S. J. Colloid Interface Sci. 2010, 348, 615.
[50]
Skoulidas, A. I. J. Am. Chem. Soc. 2004, 126, 1356.
[51]
Skoulidas, A. I.; Sholl, D. S. J. Phys. Chem. B 2005, 109, 15760.
[52]
Daglar, H.; Erucar, I.; Keskin, S. Mater. Adv. 2021, 2, 5300.
[53]
Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
[54]
Pan, L.; Olson, D. H.; Ciemnolonski, L. R.; Heddy, R.; Li, J. Angew. Chem., Int. Ed. 2006, 45, 616.
[55]
Bae, Y.-S.; Farha, O. M.; Spokoyny, A. M.; Mirkin, C. A.; Hupp, J. T.; Snurr, R. Q. Chem. Commun. 2008, 35, 4135.
[56]
Lin, X.; Blake, A. J.; Wilson, C.; Sun, X. Z.; Champness, N. R.; George, M. W.; Hubberstey, P.; Mokaya, R.; Schröder, M. J. Am. Chem. Soc. 2006, 128, 10745.
[57]
Zhou, T.; Sang, Y.; Wang, X.; Wu, C.; Zeng, D.; Xie, C. Sens. Actuators, B 2018, 258, 1099.
[58]
Ellis, J. E.; Crawford, S. E.; Kim, K.-J. Mater. Adv. 2021, 2, 6169.
[59]
Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. Chem. Soc. Rev. 2017, 46, 3185.
[60]
Li, Y.; Zou, B.; Xiao, A.; Zhang, H. Chin. J. Chem. 2017, 35, 1501.
[61]
Pang, C.; Luo, S.; Hao, Z.; Gao, J.; Huang, Z.; Yu, J.; Yu, S.; Wang, Z. Chin. J. Org. Chem. 2018, 38, 2606. (in Chinese)
[61]
(庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.).
[62]
Koo, W.-T.; Jang, J.-S.; Kim, I.-D. Chem 2019, 5, 1938.
[63]
Li, C.; Chang, L.; Gu, Z.; Zhang, J. Acta Chim. Sinica 2022, 80, 340. (in Chinese)
[63]
(李崇, 李娜, 常立美, 谷志刚, 张健, 化学学报, 2022, 80, 340.).
[64]
Wang, Q.; Sun, J.; Wei, D. Chin. J. Chem. 2022, 40, 1359.
[65]
Lu, C.-J.; Zellers, E. T. Anal. Chem. 2001, 73, 3449.
[66]
Camara, E. H. M.; Breuil, P.; Briand, D.; Guillot, L.; Pijolat, C.; de Rooij, N. F. Sens. Actuators, B 2010, 148, 610.
[67]
Alfeeli, B.; Jain, V.; Johnson, R. K.; Beyer, F. L.; Heflin, J. R.; Agah, M. Microchem. J. 2011, 98, 240.
[68]
Akbar, M.; Wang, D.; Goodman, R.; Hoover, A.; Rice, G.; Heflin, J. R.; Agah, M. J. Chromatogr. A 2013, 1322, 1.
[69]
Gu, Z.-Y.; Yang, C.-X.; Chang, N.; Yan, X.-P. Acc. Chem. Res. 2012, 45, 734.
[70]
Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Smith, M. W.; Kaskel, S. Adv. Mater. 2018, 30, 1704679.
[71]
Yeom, J.; Field, C. R.; Bae, B.; Masel, R. I.; Shannon, M. A. J. Micromech. Microeng. 2008, 18, 125001.
[72]
Alfeeli, B.; Agah, M. IEEE Sens. J. 2009, 9, 1068.
[73]
Camara, M.; Breuil, P.; Briand, D.; Viricelle, J.-P.; Pijolat, C.; de Rooij, N. F. Anal. Chem. 2015, 87, 4455.
[74]
Ni, Z.; Jerrell, J. P.; Cadwallader, K. R.; Masel, R. I. Anal. Chem. 2007, 79, 1290.
[75]
Gu, Z.-Y.; Wang, G.; Yan, X.-P. Anal. Chem. 2010, 82, 1365.
[76]
Kim, Y.-H.; Kumar, P.; Kwon, E. E.; Kim, K.-H. Microchem. J. 2017, 132, 219.
[77]
Yu, L.-Q.; Su, F.-H.; Ma, M.-Y.; Lv, Y.-K. Microchim. Acta 2019, 186, 588.
[78]
Wong, M.-Y.; Cheng, W.-R.; Liu, M.-H.; Tian, W.-C.; Lu, C.-J. Talanta 2012, 101, 307.
[79]
Han, B.; Wang, H.; Huang, H.; Liu, T.; Wu, G.; Wang, J. J. Chromatogr. A 2018, 1572, 27.
[80]
Stassen, I.; Styles, M.; Van Assche, T.; Campagnol, N.; Fransaer, J.; Denayer, J.; Tan, J.-C.; Falcaro, P.; De Vos, D.; Ameloot, R. Chem. Mater. 2015, 27, 1801.
[81]
Leidinger, M.; Sauerwald, T.; Alépée, C.; Schütze, A. Procedia Eng. 2016, 168, 293.
[82]
Leidinger, M.; Rieger, M.; Sauerwald, T.; Alépée, C.; Schütze, A. Sens. Actuators, B 2016, 236, 988.
[83]
Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem. Eur. J. 2004, 10, 1373.
[84]
Lee, J.; Lee, J.; Lim, S.-H. J. Hazard. Mater. 2020, 392, 122145.
[85]
Yusuf, K.; Aqel, A.; Alothman, Z. J. Chromatogr. A 2014, 1348, 1.
[86]
Li, X. X.; Shu, L.; Chen, S. Acta Chim. Sinica 2016, 74, 979. (in Chinese)
[86]
(李晓新, 束伦, 陈莎, 化学学报, 2016, 74, 979.)
[87]
Zhang, J.; Chen, Z. J. Chromatogr. A 2017, 1530, 1.
[88]
Guo, Z.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78, 397. (in Chinese)
[88]
(郭振彬, 张媛媛, 冯霄, 化学学报, 2020, 78, 397.)
[89]
Meng, S.-S.; Xu, M.; Han, T.; Gu, Y.-H.; Gu, Z.-Y. Anal. Methods. 2021, 13, 1318.
[90]
Liu, J.; Seo, J. H.; Li, Y.; Chen, D.; Kurabayashi, K.; Fan, X. Lab Chip 2013, 13, 818.
[91]
Haghighi, F.; Talebpour, Z.; Sanati-Nezhad, A. Lab Chip 2015, 15, 2559.
[92]
Lee, J.; Zhou, M.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X. Anal. Chem. 2016, 88, 10266.
[93]
Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.
[94]
Gu, Z.-Y.; Yan, X.-P. Angew. Chem., Int. Ed. 2010, 49, 1477.
[95]
Chang, N.; Gu, Z.-Y.; Yan, X.-P. J. Am. Chem. Soc. 2010, 132, 13645.
[96]
Gu, Z.-Y.; Jiang, J.-Q.; Yan, X.-P. Anal. Chem. 2011, 83, 5093.
[97]
Chang, N.; Yan, X.-P. J. Chromatogr. A 2012, 1257, 116.
[98]
Wu, Y.-Y.; Yang, C.-X.; Yan, X.-P. Analyst 2015, 140, 3107.
[99]
Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 12626.
[100]
Scriba, G. K. E. J. Chromatogr. A 2016, 1467, 56.
[101]
Kapnissi-Christodoulou, C. P.; Nicolaou, A. G.; Stavrou, I. J. J. Chromatogr. A 2016, 1467, 145.
[102]
Xie, S.-M.; Zhang, Z.-J.; Wang, Z.-Y.; Yuan, L.-M. J. Am. Chem. Soc. 2011, 133, 11892.
[103]
Read, D. H.; Sillerud, C. H.; Whiting, J. J.; Achyuthan, K. E. J. Chromatogr. Sci. 2020, 58, 389.
[104]
Zhao, Y. Y.; Liu, Q. Y.; Chen, B. X.; Zhao, B.; Zhou, H. M.; Li, X. X.; Zheng, D.; Feng, F. Chem. J. Chin. Univ. 2021, 42, 1736. (in Chinese)
[104]
(赵阳洋, 刘启勇, 陈泊鑫, 赵斌, 周海梅, 李昕欣, 郑丹, 冯飞, 高等学校化学学报, 2021, 42, 1736.)
[105]
Tang, W.; Meng, S.; Xu, M.; Gu, Z. Chin. J. Chromatogr. 2021, 39, 57. (in Chinese)
[105]
(汤雯淇, 孟莎莎, 徐铭, 古志远, 色谱, 2021, 39, 57.)
[106]
Gu, Z-G.; Zhang, J. Coord. Chem. Rev. 2019, 378, 513.
[107]
Pal, S.; Yu, S-S.; Kung, C-W. Chemosensors 2021, 9, 306.
[108]
Zhang, R.; Lu, L.; Chang, Y.; Liu, M. J. Hazard. Mater. 2022, 429, 128321.
[109]
Li, H.-Y.; Zhao, S.-N.; Zang, S.-Q.; Li, J. Chem. Soc. Rev. 2020, 49, 6364.
[110]
Zhai, Z.; Zhang, X.; Hao, X.; Niu, B.; Li, C. Adv. Mater. Technol. 2021, 6, 2100127.
[111]
Zhang, L-T.; Zhou, Y.; Han, S-T. Angew. Chem., Int. Ed. 2021, 60, 15192.
[112]
Yuan, H.; Li, N.; Fan, W.; Cai, H.; Zhao, D. Adv. Sci. 2022, 9, 2104374.
[113]
Majhi, S. M.; Ali, A.; Rai, P.; Greish, Y. E.; Alzamly, A.; Surya, S. G.; Qamhieh, N.; Mahmoud, S. T. Nanoscale Adv. 2022, 4, 697.
[114]
Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832.
[115]
Lu, G.; Farha, O. K.; Zhang, W.; Huo, F.; Hupp, J. T. Adv. Mater. 2012, 24, 3970.
[116]
Hu, Z.; Tao, C.-a.; Wang, F.; Zou, X.; Wang, J. J. Mater. Chem. C 2015, 3, 211.
[117]
Ranft, A.; Niekiel, F.; Pavlichenko, I.; Stock, N.; Lotsch, B. V. Chem. Mater. 2015, 27, 1961.
[118]
Liu, J.; Redel, E.; Walheim, S.; Wang, Z.; Oberst, V.; Liu, J.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T.; Bruns, M.; Gliemann, H.; Wöll, C. Chem. Mater. 2015, 27, 1991.
[119]
Vandezande, W.; Janssen, K. P. F.; Delport, F.; Ameloot, R.; De Vos, D. E.; Lammertyn, J.; Roeffaers, M. B. J. Anal. Chem. 2017, 89, 4480.
[120]
Morris, W.; Leung, B.; Furukawa, H.; Yaghi, O. M.; He, N.; Hayashi, H.; Houndonougbo, Y.; Asta, M.; Laird, B. B.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132, 11006.
[121]
Zhang, Y.-n.; Zhao, Y.; Lv, R.-q. Sens. Actuators, A 2015, 233, 374.
[122]
Kou, D.; Ma, W.; Zhang, S.; Li, R.; Zhang, Y. ACS Appl. Mater. Interfaces 2020, 12, 11955.
[123]
Wang, Z.; Zhan, K.; Zhu, Y.; Yan, J.; Liu, B.; Chen, Y. Analyst 2021, 146, 7240.
[124]
Yao, M.-S.; Tang, W.-X.; Wang, G.-E.; Nath, B.; Xu, G. Adv. Mater. 2016, 28, 5229.
[125]
Le Ouay, B.; Boudot, M.; Kitao, T.; Yanagida, T.; Kitagawa, S.; Uemura, T. J. Am. Chem. Soc. 2016, 138, 10088.
[126]
Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2013, 135, 8185.
[127]
Sun, L.; Campbell, M. G.; Dincă, M. Angew. Chem., Int. Ed. 2016, 55, 3566.
[128]
Sun, L.; Park, S. S.; Sheberla, D.; Dincă, M. J. Am. Chem. Soc. 2016, 138, 14772.
[129]
Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Angew. Chem., Int. Ed. 2015, 54, 4349.
[130]
Wu, A.-Q.; Wang, W.-Q.; Zhan, H.-B.; Cao, L.-A.; Ye, X.-L.; Zheng, J.-J.; Kumar, P. N.; Chiranjeevulu, K.; Deng, W.-H.; Wang, G.-E.; Yao, M.-S.; Xu, G. Nano Res. 2021, 14, 438.
[131]
McGinn, C. K.; Lamport, Z. A.; Kymissis, I. ACS Sens. 2020, 5, 1514.
[132]
Xu, T.; Xu, P.; Zheng, D.; Yu, H.; Li, X. Anal. Chem. 2016, 88, 12234.
[133]
Cai, S.; Li, W.; Xu, P.; Xia, X.; Yu, H.; Zhang, S.; Li, X. Analyst 2019, 144, 3729.
[134]
Panneerselvam, G.; Thirumal, V.; Pandya, H. M. Arch. Acoust. 2018, 43, 357.
[135]
Palla-Papavlu, A.; Voicu, S. I.; Dinescu, M. Chemosensors 2021, 9, 105.
[136]
Devkota, J.; Kim, K.-J.; Ohodnicki, P. R.; Culp, J. T.; Greve, D. W.; Lekse, J. W. Nanoscale 2018, 10, 8075.
[137]
Pang, W.; Zhao, H.; Kim, E. S.; Zhang, H.; Yu, H.; Hu, X. Lab Chip 2012, 12, 29.
[138]
Fu, Y. Q.; Luo, J. K.; Nguyen, N. T.; Walton, A. J.; Flewitt, A. J.; Zu, X. T.; Li, Y.; McHale, G.; Matthews, A.; Iborra, E.; Du, H.; Milne, W. I. Prog. Mater. Sci. 2017, 89, 31.
[139]
Lu, Y.; Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Pang, W.; Zhang, H.; Zhang, D.; Duan, X. ACS Appl. Mater. Interfaces 2015, 7, 17893.
[140]
Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Zhang, D.; Zhang, H.; Pang, W.; Duan, X. Sci. Rep. 2016, 6, 23970.
[141]
Hu, J.; Qu, H.; Chang, Y.; Pang, W.; Zhang, Q.; Liu, J.; Duan, X. Sens. Actuators, B 2018, 274, 419.
[142]
Chen, D.; Yang, L.; Yu, W.; Wu, M.; Wang, W.; Wang, H. Micromachines 2018, 9, 62.
[143]
Yan, X.; Qu, H.; Chang, Y.; Pang, W.; Wang, Y.; Duan, X. ACS Appl. Mater. Interfaces 2020, 12, 10009.
[144]
Gardner, J. W.; Bartlett, P. N. Sens. Actuators, B 1994, 18, 210.
[145]
Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 13780.
[146]
Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Chem. Rev. 2017, 117, 2517.
[147]
Okur, S.; Qin, P.; Chandresh, A.; Li, C.; Zhang, Z.; Lemmer, U.; Heinke, L. Angew. Chem., Int. Ed. 2021, 60, 3566.
[148]
Jin, H.; Li, Y. Curr. Opin. Chem. Eng. 2018, 20, 107.
[149]
Lee, J. H.; Jeoung, S.; Chung, Y. G.; Moon, H. R. Coord. Chem. Rev. 2019, 389, 161.
[150]
Gucuyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2010, 132, 17704.
[151]
Ania, C. O.; García-Pérez, E.; Haro, M.; Gutiérrez-Sevillano, J. J.; Valdés-Solís, T.; Parra, J. B.; Calero, S. J. Phys. Chem. Lett. 2012, 3, 1159.
[152]
Zhao, P.; Lampronti, G. I.; Lloyd, G. O.; Suard, E.; Redfern, S. A. T. J. Mater. Chem. A 2014, 2, 620.
文章导航

/