手性有机光电功能材料及其圆偏振光发射与探测
收稿日期: 2022-03-21
网络出版日期: 2022-06-01
基金资助
中国科学技术部(2021YFA1200303); 国家自然科学基金(21721002); 国家自然科学基金(52003065); 国家自然科学基金(51673049); 国家自然科学基金(21975059); 中国科学院(XDB36010200); 中国博士后科学基金(2019M660584)
Chiral Organic Optoelectronic Materials and Circularly Polarized Light Luminescence and Detection
Received date: 2022-03-21
Online published: 2022-06-01
Supported by
Ministry of Science and Technology of China(2021YFA1200303); National Natural Science Foundation of China(21721002); National Natural Science Foundation of China(52003065); National Natural Science Foundation of China(51673049); National Natural Science Foundation of China(21975059); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36010200); China Postdoctoral Science Foundation(2019M660584)
手性有机半导体由于其新颖的性质引起了有机光电领域极大的研究兴趣. 将手性引入有机半导体材料不仅可以调控聚集态结构影响载流子输运进而影响光电器件的性能, 而且催生了圆偏振光直接发射与探测材料与器件的产生与发展. 手性材料与圆偏振光之间的相互作用使得其在3D显示、量子通讯、信息存储与处理等领域展示出广泛的应用前景. 本综述总结近年来手性有机光电材料及器件的研究进展, 主要围绕手性对有机半导体材料性质与器件性能的影响展开, 聚焦于手性有机半导体的圆偏振光直接发射与探测等研究, 旨在进一步为手性有机光电子领域的发展提供系统的认识.
刘丽萱 , 杨扬 , 魏志祥 . 手性有机光电功能材料及其圆偏振光发射与探测[J]. 化学学报, 2022 , 80(7) : 970 -992 . DOI: 10.6023/A22030123
Chiral organic semiconductors have stimulated extensive research interests in the field of organic optoelectronics due to their fascinating properties. The incorporation of chirality into organic semiconducting materials can not only control their aggregation states by virtue of the unique non-covalent interactions among chiral molecules to regulate electronic/ optoelectronic properties, but also facilitates the emergence and development of circularly polarized light direct luminescence and detection. The interactions between chiral materials and circularly polarized light allow them to show broad application prospects in the field of three-dimensional display, quantum communications, information storage and processing, and so forth. This review summarizes the research progress of chiral organic optoelectronic materials and devices in recent years. It mainly reviews the influence of chirality on material properties and device performance, focusing on the applications of circularly polarized light luminescence and detection using chiral organic semiconductors, and aiming to promote the development of relevant research in the field of chiral optoelectronics.
[1] | Morrow, S. M.; Bissette, A. J.; Fletcher, S. P. Nature Nanotech. 2017, 12, 410. |
[2] | Brandt, J. R.; Salerno, F.; Fuchter, M. J. Nat. Rev. Chem. 2017, 1, 0045. |
[3] | Sanchez, D. S.; Belopolski, I.; Cochran, T. A.; Xu, X.; Yin, J.-X.; Chang, G.; Xie, W.; Manna, K.; Suss, V.; Huang, C.-Y.; Alidoust, N.; Multer, D.; Zhang, S. S.; Shumiya, N.; Wang, X.; Wang, G.-Q.; Chang, T.-R.; Felser, C.; Xu, S.-Y.; Jia, S.; Lin, H.; Hasan, M. Z. Nature 2019, 567, 500. |
[4] | Berova, N.; Di Bari, L.; Pescitelli, G. Chem. Soc. Rev. 2007, 36, 914. |
[5] | Yang, Y.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25, 6039. |
[6] | (a) Ostroverkhova, O. Chem. Rev. 2016, 116, 13279; |
[6] | (b) Shirota, Y. J. Mater. Chem. 2000, 10, 1. |
[7] | (a) Schadt, M. Annu. Rev. Mater. Sci. 1997, 27, 305; |
[7] | (b) Carey, J. E.; Crouch, C. H.; Shen, M. Y.; Mazur, E. Opt. Lett. 2005, 30, 1773; |
[7] | (c) Kim, D.-Y. J. Korean Phys. Soc. 2006, 49, S505; |
[7] | (d) Sherson, J. F.; Krauter, H.; Olsson, R. K.; Julsgaard, B.; Hammerer, K.; Cirac, I.; Polzik, E. S. Nature 2006, 443, 557. |
[8] | Naaman, R.; Paltiel, Y.; Waldeck, D. H. Nat. Rev. Chem. 2019, 3, 250. |
[9] | (a) Zhang, D.-W.; Li, M.; Chen, C.-F. Chem. Soc. Rev. 2020, 49, 1331; |
[9] | (b) Liu, J.; Zhang, Y.; Phan, H.; Sharenko, A.; Moonsin, P.; Walker, B.; Promarak, V.; Nguyen, T. Q. Adv. Mater. 2013, 25, 3645. |
[10] | (a) Lermo, E. R.; Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W. Chem. Commun. 1999, 9, 791; |
[10] | (b) Geng, Y. H.; Trajkovska, A.; Katsis, D.; Ou, J. J.; Culligan, S. W.; Chen, S. H. J. Am. Chem. Soc. 2002, 124, 8337; |
[10] | (c) Craig, M. R.; Jonkheijm, P.; Meskers, S. C. J.; Schenning, A.; Meijer, E. W. Adv. Mater. 2003, 15, 1435. |
[11] | (a) Yang, Y.; Rice, B.; Shi, X.; Brandt, J. R.; da Costa, R. C.; Hedley, G. J.; Smilgies, D.-M.; Frost, J. M.; Samuel, I. D. W.; Otero-de-la-Roza, A.; Johnson, E. R.; Jelfs, K. E.; Nelson, J.; Campbell, A. J.; Fuchter, M. J. ACS Nano 2017, 11, 8329; |
[11] | (b) Hatakeyama, T.; Hashimoto, S.; Oba, T.; Nakamura, M. J. Am. Chem. Soc. 2012, 134, 19600. |
[12] | Henson, Z. B.; Muellen, K.; Bazan, G. C. Nature Chem. 2012, 4, 699. |
[13] | Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210. |
[14] | (a) Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T. M. Adv. Mater. 2007, 19, 688; |
[14] | (b) Li, H.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. J. Am. Chem. Soc. 2012, 134, 2760. |
[15] | Kulkarni, C.; van Son, M. H. C.; Di Nuzzo, D.; Meskers, S. C. J.; Palmans, A. R. A.; Meijer, E. W. Chem. Mater. 2019, 31, 6633. |
[16] | Stolte, M.; Suraru, S.-L.; Diemer, P.; He, T.; Burschka, C.; Zschieschang, U.; Klauk, H.; Würthner, F. Adv. Funct. Mater. 2016, 26, 7415. |
[17] | He, T.; Leowanawat, P.; Burschka, C.; Stepanenko, V.; Stolte, M.; Würthner, F. Adv. Mater. 2018, 30, 1804032. |
[18] | Chen, M.; Li, J.; Jiao, X.; Yang, X.; Wu, W.; McNeill, C. R.; Gao, X. J. Mater. Chem. C 2019, 7, 2659. |
[19] | Xie, J.; Zhou, Q. Acta Chim. Sinica 2014, 72, 778. (in Chinese) |
[19] | (谢建华, 周其林, 化学学报, 2014, 72, 778.) |
[20] | Chen, M.; Jiao, X.; Li, J.; Wu, W.; Xin, H.; McNeill, C. R.; Gao, X. Langmuir 2019, 35, 6188. |
[21] | Zhuang, F. D.; Yang, J. H.; Sun, Z. H.; Zhang, P. F.; Chen, Q. R.; Wang, J. Y.; Pei, J. Chinese J. Chem. 2021, 39, 909. |
[22] | Zerdan, R. B.; Shewmon, N. T.; Zhu, Y.; Mudrick, J. P.; Chesney, K. J.; Xue, J.; Castellano, R. K. Adv. Funct. Mater. 2014, 24, 5993. |
[23] | Ikai, T.; Kojima, R.; Katori, S.; Yamamoto, T.; Kuwabara, T.; Maeda, K.; Takahashi, K.; Kanoh, S. Polymer 2015, 56, 171. |
[24] | Sugawara, K.; Nakamura, N.; Yamane, Y.; Hayase, S.; Nokami, T.; Itoh, T. Green Energy Environ. 2016, 1, 149. |
[25] | Umeyama, T.; Shibata, S.; Igarashi, K.; Takahara, S.; Higashino, T.; Seki, S.; Imahori, H. Chem. Lett. 2017, 46, 1001. |
[26] | Josse, P.; Favereau, L.; Shen, C.; Dabos-Seignon, S.; Blanchard, P.; Cabanetos, C.; Crassous, J. Chem. Eur. J. 2017, 23, 6277. |
[27] | Brandt, J. R.; Wang, X.; Yang, Y.; Campbell, A. J.; Fuchter, M. J. J. Am. Chem. Soc. 2016, 138, 9743. |
[28] | (a) Carr, R.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41, 7673; |
[28] | (b) Aspinall, H. C. Chem. Rev. 2002, 102, 1807; |
[28] | (c) Bunzli, J. C. G.; Piguet, C. Chem. Rev. 2002, 102, 1897; |
[28] | (d) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Chem. Rev. 2014, 114, 4496. |
[29] | Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Chem. Rev. 2016, 116, 13752. |
[30] | LangeveldVoss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.; Meskers, S. C. J.; Dekkers, H.; Meijer, E. W. J. Am. Chem. Soc. 1996, 118, 4908. |
[31] | Chen, S. H.; Katsis, D.; Schmid, A. W.; Mastrangelo, J. C.; Tsutsui, T.; Blanton, T. N. Nature 1999, 397, 506. |
[32] | Lee, D.; Jin, Y.-J.; Kim, H.; Suzuki, N.; Fujiki, M.; Sakaguchi, T.; Kim, S. K.; Lee, W.-E.; Kwak, G. Macromolecules 2012, 45, 5379. |
[33] | Li, M.; Lin, W.-B.; Fang, L.; Chen, C.-F. Acta Chim. Sinica 2017, 75, 1150. (in Chinese) |
[33] | (李猛, 林伟彬, 房蕾, 陈传峰, 化学学报, 2017, 75, 1150.) |
[34] | Liu, J.; Su, H.; Meng, L.; Zhao, Y.; Deng, C.; Ng, J. C. Y.; Lu, P.; Faisal, M.; Lam, J. W. Y.; Huang, X.; Wu, H.; Wong, K. S.; Tang, B. Z. Chem. Sci. 2012, 3, 2737. |
[35] | Zhao, T.; Han, J.; Jin, X.; Liu, Y.; Liu, M.; Duan, P. Angew. Chem. Int. Ed. 2019, 58, 4978. |
[36] | Yang, D.; Duan, P.; Zhang, L.; Liu, M. Nat. Commun. 2017, 8, 15727. |
[37] | Han, J.; Yang, D.; Jin, X.; Jiang, Y.; Liu, M.; Duan, P. Angew. Chem. Int. Ed. 2019, 58, 7013. |
[38] | Yang, D.; Duan, P.; Liu, M. Angew. Chem. Int. Ed. 2018, 57, 9357. |
[39] | Liu, B.; Bockmann, M.; Jiang, W.; Doltsinis, N. L.; Wang, Z. J. Am. Chem. Soc. 2020, 142, 7092. |
[40] | (a) Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2016, 138, 10184; |
[40] | (b) Liu, G.; Koch, T.; Li, Y.; Doltsinis, N. L.; Wang, Z. Angew. Chem. Int. Ed. 2019, 58, 178; |
[40] | (c) Meng, D.; Liu, G.; Xiao, C.; Shi, Y.; Zhang, L.; Jiang, L.; Baldridge, K. K.; Li, Y.; Siegel, J. S.; Wang, Z. J. Am. Chem. Soc. 2019, 141, 5402. |
[41] | Lunkley, J. L.; Shirotani, D.; Yamanari, K.; Kaizaki, S.; Muller, G. J. Am. Chem. Soc. 2008, 130, 13814. |
[42] | (a) Zinna, F.; Giovanella, U.; Di Bari, L. Adv. Mater. 2015, 27, 1791; |
[42] | (b) Feuillastre, S.; Pauton, M.; Gao, L.; Desmarchelier, A.; Riives, A. J.; Prim, D.; Tondelier, D.; Geffroy, B.; Muller, G.; Clavier, G.; Pieters, G. J. Am. Chem. Soc. 2016, 138, 3990. |
[43] | Peeters, E.; Christiaans, M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H.; Meijer, E. W. J. Am. Chem. Soc. 1997, 119, 9909. |
[44] | Oda, M.; Nothofer, H. G.; Lieser, G.; Scherf, U.; Meskers, S. C. J.; Neher, D. Adv. Mater. 2000, 12, 362. |
[45] | Di Nuzzo, D.; Kulkarni, C.; Zhao, B.; Smolinsky, E.; Tassinar, F.; Meskers, S. C. J.; Naaman, R.; Meijer, E. W.; Friend, R. H. ACS Nano 2017, 11, 12713. |
[46] | (a) Yang, L.; Zhang, Y.; Zhang, X.; Li, N.; Quan, Y.; Cheng, Y. Chem. Commun. 2018, 54, 9663; |
[46] | (b) Wang, Y. F.; Li, M.; Teng, J. M.; Zhou, H. Y.; Zhao, W. L.; Chen, C. F. Angew. Chem. Int. Ed. 2021, 60, 23619. |
[47] | Yang, Y.; da Costa, R. C.; Smilgies, D.-M.; Campbell, A. J.; Fuchter, M. J. Adv. Mater. 2013, 25, 2624. |
[48] | Wan, L.; Wade, J.; Salerno, F.; Arteaga, O.; Laidlaw, B.; Wang, X.; Penfold, T.; Fuchter, M. J.; Campbell, A. J. ACS Nano 2019, 13, 8099. |
[49] | Jung, J.-H.; Lee, D.-M.; Kim, J.-H.; Yu, C.-J. J. Mater. Chem. C 2018, 6, 726. |
[50] | Li, T.-Y.; Jing, Y.-M.; Liu, X.; Zhao, Y.; Shi, L.; Tang, Z.; Zheng, Y.-X.; Zuo, J.-L. Sci. Rep. 2015, 5, 14912. |
[51] | Zhang, X.; Zhang, Y.; Zhang, H.; Quan, Y.; Li, Y.; Cheng, Y.; Ye, S. Org. Lett. 2019, 21, 439. |
[52] | Zhang, Y.; Zhang, X.; Zhang, H.; Xiao, Y.; Quan, Y.; Ye, S.; Cheng, Y. J. Phys. Chem. C 2019, 123, 24746. |
[53] | Imagawa, T.; Hirata, S.; Totani, K.; Watanabe, T.; Vacha, M. Chem. Commun. 2015, 51, 13268. |
[54] | Li, M.; Li, S.-H.; Zhang, D.; Cai, M.; Duan, L.; Fung, M.-K.; Chen, C.-F. Angew. Chem. Int. Ed. 2018, 57, 2889. |
[55] | Zhang, Y. P.; Liang, X.; Luo, X. F.; Song, S. Q.; Li, S.; Wang, Y.; Mao, Z. P.; Xu, W. Y.; Zheng, Y. X.; Zuo, J. L.; Pan, Y. Angew. Chem. Int. Ed. 2021, 60, 8435. |
[56] | Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Appl. Phys. Lett. 2011, 98, 165208. |
[57] | Ma, W.; Xu, L.; de Moura, A. F.; Wu, X.; Kuang, H.; Xu, C.; Kotov, N. A. Chem. Rev. 2017, 117, 8041. |
[58] | Yang, Y.; da Costa, R. C.; Fuchter, M. J.; Campbell, A. J. Nature Photon. 2013, 7, 634. |
[59] | Shi, W.; Salerno, F.; Ward, M. D.; Santana-Bonilla, A.; Wade, J.; Hou, X.; Liu, T.; Dennis, T. J. S.; Campbell, A. J.; Jelfs, K. E.; Fuchter, M. J. Adv. Mater. 2021, 33, 2004115. |
[60] | Shang, X.; Song, I.; Ohtsu, H.; Lee, Y. H.; Zhao, T.; Kojima, T.; Jung, J. H.; Kawano, M.; Oh, J. H. Adv. Mater. 2017, 29, 1605828. |
[61] | Shang, X.; Song, I.; Lee, J. H.; Choi, W.; Ahn, J.; Ohtsu, H.; Kim, J. C.; Koo, J. Y.; Kwak, S. K.; Oh, J. H. ACS Nano 2020, 14, 14146. |
[62] | Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.-J.; Oh, J. H.; Lin, J. Nat. Commun. 2021, 12, 142. |
[63] | Cheng, J. J.; Ge, F.; Zhang, C.; Kuai, Y.; Hou, P. H.; Xiang, Y. F.; Zhang, D. G.; Qiu, L. Z.; Zhang, Q. J.; Zou, G. J. Mater. Chem. C 2020, 8, 9271. |
[64] | Han, H.; Lee, Y. J.; Kyhm, J.; Jeong, J. S.; Han, J.-H.; Yang, M. K.; Lee, K. M.; Choi, Y.; Yoon, T.-H.; Ju, H.; Ahn, S.-K.; Lim, J. A. Adv. Funct. Mater. 2020, 30, 2006236. |
[65] | Gilot, J.; Abbel, R.; Lakhwani, G.; Meijer, E. W.; Schenning, A. P. H. J.; Meskers, S. C. J. Adv. Mater. 2010, 22, E131. |
[66] | Schulz, M.; Balzer, F.; Scheunemann, D.; Arteaga, O.; Luetzen, A.; Meskers, S. C. J.; Schiek, M. Adv. Funct. Mater. 2019, 29, 1900684. |
[67] | Kim, N. Y.; Kyhm, J.; Han, H.; Kim, S. J.; Ahn, J.; Hwang, D. K.; Jang, H. W.; Ju, B.-K.; Lim, J. A. Adv. Funct. Mater. 2019, 29, 1808668. |
[68] | Wang, Z.; Gao, M.; Hao, X.; Qin, W. Appl. Phys. Lett. 2020, 116, 053301. |
[69] | Ward, M. D.; Wade, J.; Shi, X.; Nelson, J.; Campbell, A. J.; Fuchter, M. J. Adv. Opt. Mater. 2022, 10, 2101044. |
[70] | Liu, L.; Yang, Y.; Wang, Y.; Adil, M. A.; Zhao, Y.; Zhang, J.; Chen, K.; Deng, D.; Zhang, H.; Amin, K.; Wu, Y.; Zhang, Y.; Wei, Z. ACS Mater. Lett. 2022, 4, 401. |
/
〈 |
|
〉 |