苯酚(醌)与烯烃的不对称[3+2]环化反应: 手性二氢苯并呋喃的合成进展
收稿日期: 2022-04-14
网络出版日期: 2022-06-20
基金资助
国家自然科学基金(21772078); 国家自然科学基金(22071200); 四川省科技计划项目(2020JDRC0021); 中央高校基本科研业务费专项资金资助项目(2682021ZTPY011)
Recent Advances on the Construction of Chiral Dihydrobenzofurans by Asymmetric [3+2] Cyclization Reactions of Phenols (Quinones) and Alkenes
Received date: 2022-04-14
Online published: 2022-06-20
Supported by
National Natural Science Foundation of China(21772078); National Natural Science Foundation of China(22071200); Science and Technology Department of Sichuan Province(2020JDRC0021); Fundamental Research Funds for the Central Universities(2682021ZTPY011)
二氢苯并呋喃结构单元广泛存在于具有良好生物活性和药用价值的天然产物之中, 因而引起了有机合成化学家和药物化学家们的关注. 针对该结构单元所包含的C2和C3邻二立体中心的对映选择性构建, 也是目前有机合成方法学研究的挑战性问题之一. 在众多解决方案中, 以苯酚(醌)与烯烃为底物, 具体采用催化不对称和手性辅剂诱导的[3+2]环化两种方式, 可以构建具有光学活性的二氢苯并呋喃结构单元. 本综述将不同类型的手性催化剂和手性辅剂进行分类梳理, 介绍了近年来不对称[3+2]环化反应的发展, 并重点剖析其中涉及的立体选择性控制. 同时, 简要介绍了该关键方法在二氢苯并呋喃天然产物合成中的应用. 为了启发更加高效和普适性的新催化体系出现, 最后总结和展望了不对称[3+2]环化反应的发展趋势.
关键词: 不对称[3+2]环化; 手性二氢苯并呋喃; 不对称催化; 手性辅剂; 邻二手性中心
张崃 , 肖检 , 王雅雯 , 彭羽 . 苯酚(醌)与烯烃的不对称[3+2]环化反应: 手性二氢苯并呋喃的合成进展[J]. 化学学报, 2022 , 80(8) : 1152 -1164 . DOI: 10.6023/A22040173
Dihydrobenzofuran structural units are widely present in bioactive natural products, and therefore, this type of natural products have attracted extensive attention from synthetic organic chemists and pharmaceutical chemists. In recent years, enantioselective formation of this structural unit, especially its C2 and C3 vicinal chiral stereocenters, has always been one of challenging problems in the field of synthetic methodology. Among some methods, the construction of optically active dihydrobenzofuran structural units from [3+2] cyclizations of phenols (quinones) and olefins via asymmetric catalysis or induction by chiral auxiliaries developed rapidly. In this review, we summarized the recent progress of asymmetric [3+2] cyclization reactions with different types of chiral catalysts and auxiliaries, especially with emphasis on understanding the control of stereoselectivies in these methods. Meanwhile, the application in the total synthesis of dihydrobenzofurans enabled by asymmetric [3+2] cyclization reactions was briefly introduced. Finally, the future development trend of asymmetric [3+2] cyclization reactions was analyzed, in order to stimulate the emergence of highly efficient and general catalytic system.
[1] | Da Silva, R. Z.; Yunes, R. A.; de Souza, M. M.; Monache, F. D.; Cechinel-Filho, V. J. Nat. Med. 2010, 64, 402. |
[2] | Binns, A. N.; Chen, R. H.; Wood, H. N.; Lynn, D. G. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 980. |
[3] | (a) Soldi, C.; Lamb, K. N.; Squitieri, R. A.; Gonza?lez-Lo?pez, M.; Di Maso, M. J.; Shaw, J. T. J. Am. Chem. Soc. 2014, 136, 15142. |
[3] | (b) Zhang, X.; Sivaguru, P.; Zanoni, G.; Han, X.; Tong, M.; Bi, X. ACS Catal. 2021, 11, 14293. |
[3] | (c) Fang, L.-Z.; Liu, S.-S.; Han, L.-L.; Li, H.-H.; Zhao, F.-F. Organometallics 2017, 36, 1217. |
[3] | (d) Ortega, N.; Beiring, B.; Urban, S.; Glorius, F. Tetrahedron 2012, 68, 5185. |
[3] | (e) Cheng, Q.; Zhang, H.-J.; Yue, W.-J.; You, S.-L. Chem 2017, 3, 428. |
[3] | (f) Zhao, J.-Q.; Zhou, X.-J.; Zhou, Y.; Xu, X.-Y.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2018, 20, 909. |
[3] | (g) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714. |
[3] | (h) Lu, A.; Hu, K.; Wang, Y.; Song, H.; Zhou, Z.; Fang, J.; Tang, C. J. Org. Chem. 2012, 77, 6208. |
[3] | (i) Zhou, T.; Xia, T.; Liu, Z.; Liu, L.; Zhang, J. Adv. Synth. Catal. 2018, 360, 4475. |
[3] | (j) Zhang, S.; Yu, X.-J.; Pan, J.-K.; Jiang, C.-H.; Zhang, H.-S.; Wang, T. Org. Chem. Front. 2019, 6, 3799. |
[3] | (k) Jiang, X.-L.; Liu, S.-J.; Gu, Y.-Q.; Mei, G.-J.; Shi, F. Adv. Synth. Catal. 2017, 359, 3341. |
[3] | (l) Wu, Y.; Xu, B.; Zhao, G..; Pan, Z.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. 2021, 39, 3255. |
[4] | (a) Bolzacchini, E.; Brunow, G.; Meinardi, S.; Orlandi, M.; Rindone, B.; Rummakko, P.; Setala, H. Tetrahedron Lett. 1998, 39, 3291. |
[4] | (b) Orlandi, M.; Rindone, B.; Molteni, G.; Rummakko, P.; Brunow, G. Tetrahedron 2001, 57, 371. |
[4] | (c) Bruschi, M.; Orlandi, M.; Rindone, B.; Rummakko, P.; Zoia, L. J. Phys. Org. Chem. 2006, 19, 592. |
[5] | Orjala, J.; Wright, A. D.; Erdelmeier, C. A. J.; Sticher, O.; Rali, T. Helv. Chim. Acta 1993, 76, 1481. |
[6] | Xiao, J.; Zhao, J.; Wang, Y.-W.; Luo, G.; Peng, Y. Org. Biomol. Chem. 2021, 19, 9840. |
[7] | (a) Liao, L.; Shu, C.; Zhang, M.; Liao, Y.; Hu, X.; Zhang, Y.; Wu, Z.; Yuan, W.; Zhang, X. Angew. Chem. Int. Ed. 2014, 53, 10471. |
[7] | (b) Zhang, M.; Yu, S.; Hu, F.; Liao, Y.; Liao, L.; Xu, X.; Yuan, W.; Zhang, X. Chem. Commun. 2016, 52, 8757. |
[8] | Feng, W.; Yang, H.; Wang, Z.; Gou, B.-B.; Chen, J.; Zhou, L. Org. Lett. 2018, 20, 2929. |
[9] | (a) Luo, W.; Sun, Z.; Nisala Fernando, E. H.; Nesterov, V. N.; Cundari, T. R.; Wang, H. Chem. Sci. 2020, 11, 9386. |
[9] | (b) Liu, H.; Yan, Y.; Zhang, J.; Liu, M.; Cheng, S.; Wang, Z.; Zhang, X. Chem. Commun. 2020, 56, 13591. |
[10] | Yu, Q.; Fu, Y.; Huang, J.; Qin, J.; Zuo, H; Wu, Y.; Zhong, F. ACS Catal. 2019, 9, 7285. |
[11] | (a) Sun, X.-X.; Zhang, H.-H.; Li, G.-H.; Meng, L.; Shi, F. Chem. Commun. 2016, 52, 2968. |
[11] | (b) Zhao, J.-J.; Sun, S.-B.; He, S.-H.; Wu, Q.; Shi, F. Angew. Chem. Int. Ed. 2015, 54, 5460. |
[12] | Gelis, C.; Bekkaye, M.; Lebée, C.; Blanchard, F.; Masson, G. Org. Lett. 2016, 18, 3422. |
[13] | (a) Alemán, J.; Cabrera, S.; Maerten, E.; Overgaard, J.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2007, 46, 5520. |
[13] | (b) Jensen, K. L.; Franke, P. T.; Nielsen, L. T.; Daasbjerg, K.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2010, 49, 129. |
[14] | Suljić, S.; Pietruszka, J.; Worgull, D. Adv. Synth. Catal. 2015, 357, 1822. |
[15] | Albrecht, Ł.; Ransborg, L. K.; Lauridsen, V.; Overgaard, M.; Zweifel, T.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2011, 50, 12496. |
[16] | Liu, Q.-J.; Zhu, J.; Song, X.-Y.; Wang, L.-J.; Wang, S. R.; Tang, Y. Angew. Chem. Int. Ed. 2018, 57, 3810. |
[17] | (a) Jing, Z.-R.; Liang, D.-D.; Tian, J.-M.; Zhang, F.-M.; Tu, Y.-Q. Org. Lett. 2021, 23, 1258. |
[17] | (b) Tian, J.-M.; Wang, A.-F.; Yang, J.-S.; Zhao, X.-J.; Tu, Y.-Q.; Zhang, S.-Y.; Chen, Z.-M. Angew. Chem. Int. Ed. 2019, 58, 11023. |
[17] | (c) Xi, C.-C.; Zhao, X.-J.; Tian, J.-M.; Chen, Z.-M.; Zhang, K.; Zhang, F.-M.; Tu, Y.-Q.; Dong, J. W. Org. Lett. 2020, 22, 4995. |
[18] | (a) Borrajo-Calleja, G. M.; Bizet, V.; Mazet, C. J. Am. Chem. Soc. 2016, 138, 4014. |
[18] | (b) Tao, M.; Tu, Y.; Liu, Y.; Wu, H.; Liu, L.; Zhang, J. Chem. Sci. 2020, 11, 6283. |
[19] | Silva, A. R.; Polo, E. C.; Martins, N. C.; Correia, C. R. D. Adv. Synth. Catal. 2018, 360, 346. |
[20] | Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 11958. |
[21] | (a) Engler, T. A.; Letavic, M. A.; Reddy, J. P. J. Am. Chem. Soc. 1991, 113, 5068. |
[21] | (b) Engler, T. A.; Letavic, M. A.; Iyengar, R.; LaTessa, K. O.; Reddy, J. P. J. Org. Chem. 1999, 64, 2391. |
[22] | (a) Zhu, D.-X.; Xia, H.; Liu, J.-G.; Chung, L. W.; Xu, M.-H. J. Am. Chem. Soc. 2021, 143, 2608. |
[22] | (b) Zhu, D.-X.; Liu, J.-G.; Xu, M.-H. J. Am. Chem. Soc. 2021, 143, 8583. |
[23] | Masutani, K.; Irie, R.; Katsuki, T. Chem. Lett. 2002, 31, 36. |
[24] | Zhao, J.; Xiao, J.; Wang, Y.-W.; Peng, Y. Chin. J. Org. Chem. 2021, 41, 2933. (in Chinese) |
[24] | (赵军, 肖检, 王雅雯, 彭羽, 有机化学, 2021, 41, 2933.) |
/
〈 |
|
〉 |