第二代生物柴油制备的多相催化剂的结构设计及研究进展
收稿日期: 2022-04-26
网络出版日期: 2022-07-04
基金资助
北京自然科学基金(2212012); 国家自然科学基金(22172006); 国家自然科学基金(21521005); 国家自然科学基金(22102006); 国家重点研发计划(2021YFC2103501); 中央高校基本科研业务费(XK1803-05)
Structural Design and Research Progress of Heterogeneous Catalysts for the Preparation of Second Generation Biodiesel
Received date: 2022-04-26
Online published: 2022-07-04
Supported by
Beijing Natural Science Foundation(2212012); National Natural Science Foundation of China(22172006); National Natural Science Foundation of China(21521005); National Natural Science Foundation of China(22102006); National Key Research and Development Program(2021YFC2103501); Fundamental Research Funds for the Central Universities(XK1803-05)
生物柴油是一种重要的可再生清洁能源, 特别是经催化加氢脱氧等系列过程制备的第二代生物柴油, 在成分上与石油基燃料相似, 有望成为一种替代传统化石燃料的绿色能源. 在合成第二代生物柴油的研究中, 设计与制备兼具高活性与高稳定性的加氢脱氧多相催化剂是关键问题. 近年来, 研究者对于催化剂的种类与应用进行了探索, 并取得了一定的进展. 详细分析了加氢脱氧制备第二代生物柴油反应原料及反应参数、反应器对生产路径和产能的影响, 并对反应机理进行了介绍; 进一步从双金属位点、金属-酸性位点及金属-空位协同作用三个方面对催化剂结构设计进行了讨论和分析; 最后, 对第二代生物柴油领域的未来发展趋势进行了展望.
田钊炜 , 达伟民 , 王雷 , 杨宇森 , 卫敏 . 第二代生物柴油制备的多相催化剂的结构设计及研究进展[J]. 化学学报, 2022 , 80(9) : 1322 -1337 . DOI: 10.6023/A22040189
Biodiesel is an important renewable and clean energy, especially the second-generation of biodiesel prepared by a series of processes such as catalytic hydrodeoxygenation. It is similar to petroleum-based fuels in composition, and is expected to become a green energy alternative to traditional fossil fuels. In the study of the synthesis of the second generation of biodiesel, the design and preparation of hydrodeoxygenation heterogeneous catalysts with high activity and stability are the key issues. In recent years, many studies have been reported on the types and applications of catalysts, and some research progress has been made. The effects of reaction materials, reaction parameters and reactor on the production path and capacity of the second generation biodiesel prepared by hydrodeoxygenation were surveyed in detail, and the reaction mechanism was introduced. Then regulation strategies of hydrodeoxygenation catalysts are discussed and analyzed from three aspects: bimetallic sites, metal-acidic sites and metal-vacancy synergistic effect. In the final section, future development opportunities and challenges for the second-generation biodiesel are prospected.
Key words: biomass; biodiesel; hydrodeoxygenation; heterogeneous catalyst; synergistic effect
[1] | Tao Z. Science 2020, 367, 1305. |
[2] | Sudarsanam P.; Peeters E.; Makshina E.; Parvulescu V.; Sels B. Chem. Soc. Rev. 2019, 48, 2366. |
[3] | Sudarsanam P.; Zhong R.; Bosch S.; Coman S.; Parvulescu V.; Sels B. Chem. Soc. Rev. 2018, 47, 8349. |
[4] | Yang Y.; Ren Z.; Zhou S.; Wei M. ACS Catal. 2021, 11, 6440. |
[5] | Jing Y.; Guo Y.; Xia Q.; Liu X.; Wang Y. Chem 2019, 5, 2520. |
[6] | Kumar A.; Daw P.; Milstein D.; Tang C.; Junge H.; Lurency G. Chem. Rev. 2021, 118, 372. |
[7] | Luo H.; Barrio J.; Sunny N.; Li A.; Steier L.; Shah N.; Stephen I.; Titirici M. Adv. Energy Mater. 2021, 11, 2101180. |
[8] | Naik S.; Goud V.; Rout P.; Dilia A. Renewable Sustainable Energy Rev. 2010, 14, 578. |
[9] | Sun G.; Li Y.; Cai Z.; Teng Y.; Wang Y.; Reaney M. Appl. Catal., B 2017, 209, 118. |
[10] | Yue Q.; Gao L.; Xiao G. Process. Chem. 2021, 40, 81. |
[11] | Huang R. Petrochem. Ind. Technol. 2022, 29, 186. |
[12] | Zhao L.; Li B.; Zhao C. ACS Sustainable Chem. Eng. 2021, 9, 12970. |
[13] | Ali A.; Li B.; Lu Y.; Zhao C. Green Chem. 2019, 21, 3059. |
[14] | Kong X.; Fang Z.; Bao X.; Wang Z.; Mao S.; Wang Y. J. Catal. 2018, 367, 139. |
[15] | Biermann U.; Bornscheuer U.; Feussner I.; Meier M.; Metzger J. Angew. Chem., Int. Ed. 2021, 60, 20144. |
[16] | Wang D.; Jiang W.; Zhao Z.; Jin S.; He C.; He Y. Nat. Gas Chem. Ind. 2017, 42, 114.(in Chinese) |
[16] | (王东军, 姜伟, 赵仲阳, 金书含, 何昌洪, 何玉莲, 天然气化工, 2017, 42, 114.) |
[17] | Zhang J.; Huo X.; Li Y.; Strathmann T. ACS Sustainable Chem. Eng. 2019, 7, 14400. |
[18] | Zulkepli S.; Juan J.; Lee H.; Rahman N.; Show P.; Ng E. Energy Convers. Manage. 2018, 165, 495. |
[19] | Long F.; Liu W.; Jiang X.; Zhai Q.; Cao X.; Jiang J.; Xu J. Renewable Sustainable Energy Rev. 2021, 148, 111269. |
[20] | Yu C.; Yu S.; Li L. Fuel 2022, 308, 122038. |
[21] | Ameen M.; Azizan M.; Yusup S.; Ramli A.; Yasir M. Renewable Sustainable Energy Rev. 2017, 80, 1072. |
[22] | Kim S.; Kwon E.; Kim Y.; Jung S.; Kim H.; Huber G.; Lee J. Green Chem. 2019, 21, 3715. |
[23] | Kumar D.; Singh B.; Banerjee A.; Chatterjee S. J. Cleaner Prod. 2018, 183, 26. |
[24] | Yang X.; Wang Y.; Yang Y.; Feng E.; Luo J.; Zhang F.; Yang W.; Bao G. Energy Convers. Manage. 2018, 164, 112. |
[25] | Jesus S.; Ferreira G.; Moreira L.; Filho R. Renewable Energy 2020, 160, 1283. |
[26] | Zhang Z.; Bi G.; Zhang H.; Zhang A.; Li X.; Xie J. Fuel 2019, 247, 26. |
[27] | Valencia D.; Zenteno C.; Gómora D.; Pérez M.; Aburto J. Green Chem. 2020, 22, 3470. |
[28] | Ameen M.; Azizan M.; Yusup S.; Ramli A.; Shahbaz M.; Aqsha A.; Kaur H.; Wai C. Energy Fuels 2020, 34, 4603. |
[29] | Cao X.; Long F.; Wang F.; Zhao J.; Xu J.; Jiang J. Renewable Energy 2021, 180, 1. |
[30] | Xin H.; Guo K.; Li D.; Yang H.; Hu C. Appl. Catal., B 2016, 187, 375. |
[31] | Li X.; Luo X.; Jin Y.; Li J.; Zhang H.; Zhang A.; Xie J. Renewable Sustainable Energy Rev. 2018, 82, 3762. |
[32] | Yang Z. Guangdong Chem. Ind. 2018, 45, 178.(in Chinese) |
[32] | (杨紫浓, 广东化工, 2018, 45, 178.) |
[33] | Wang F.; Xu J.; Jiang J.; Liu P.; Zhou M.; Wang K. Mater. Rep. 2018, 32, 765.(in Chinese) |
[33] | (王霏, 徐俊明, 蒋剑春, 刘朋, 周明浩, 王奎, 材料导报, 2018, 32, 765.) |
[34] | Li C.; Zhou Y. Nat. Gas Chem. Ind. 2021, 46, 17.(in Chinese) |
[34] | (李春桃, 周圆圆, 天然气化工, 2021, 46, 17.) |
[35] | Fang H.; Wu L.; Chen W. CIESC J. 2021, 72, 3562. |
[36] | Chen S.; Zhou G.; Miao C. Renewable Sustainable Energy Rev. 2019, 101, 568. |
[37] | Ooi X.; Gao W.; Ong H.; Lee H.; Juan J.; Chen W.; Lee K. Renewable Sustainable Energy Rev. 2019, 112, 834. |
[38] | Peng B.; Yuan X.; Zhao C.; Lercher J. J. Am. Chem. Soc. 2012, 134, 9400. |
[39] | Zharova P.; Chistyakov A.; Shapovalov S.; Pasynskii A.; Tsodikov M. Energy 2019, 172, 18. |
[40] | Hachemi I.; Jeništová K.; Mäki-Arvela P.; Kumar N.; Eränen K.; Hemming J.; Murzin D. Catal. Sci. Technol. 2016, 6, 1476. |
[41] | Yeh T.; Hockstad R.; Linic S.; Savage P. Fuel 2015, 156, 219. |
[42] | Yang C.; Nie R.; Fu J.; Hou Z.; Lu X. Bioresour. Technol. 2013, 146, 569. |
[43] | Yao X.; Strathmann T.; Li Y.; Cronmiller L.; Ma H.; Zhang J. Green Chem. 2021, 23, 1114. |
[44] | Yang Y.; Wang Q.; Zhang X.; Wang L.; Li G. Fuel Process. Technol. 2013, 116, 165. |
[45] | Arora P.; Grennfelt E.; Olsson L.; Creaser D. Chem. Eng. J. 2019, 364, 376. |
[46] | Zhang Z.; Okejiri F.; Li Y.; Fu J. New J. Chem. 2020, 44, 7642. |
[47] | Hwang K.; Choi I.; Choi H.; Han J.; Lee K.; Lee J. Fuel 2016, 174, 107. |
[48] | Madsen A.; Rozmysłowicz B.; Mäki-Arvela P.; Simakova I.; Murzin D.; Fehrmann R. Top. Catal. 2013, 56, 714. |
[49] | Miao C.; Marin-Flores O.; Davidson S.; Li T.; Dong T.; Gao D.; Wang Y.; Pérez M.; Chen S. Fuel 2016, 166, 302. |
[50] | Kokayeffff P.; Zink S.; Roxas P. Handbook of Petroleum Processing, New York, Springer International, Cham, 2015. |
[51] | Di L.; Yao S.; Song S.; Wu G.; Dai W.; Guan N.; Li L. Appl. Catal., B 2016, 201, 137. |
[52] | Wu G.; Zhang N.; Dai W.; Guan N.; Li L. ChemSusChem 2018, 11, 2179. |
[53] | Sullivan M.; Bhan A. ACS Catal. 2016, 6, 1145. |
[54] | Jeništová K.; Hachemi I.; Arvela P.; Kumar N.; Peurla M.; Čapek L.; Wärnå J.; Murzin D. Chem. Eng. J. 2017, 316, 401. |
[55] | Kumar P.; Yenumala S.; Maity S.; Shee D. Appl. Catal. A: Gen. 2014, 471, 28. |
[56] | Cao X.; Long F.; Zhai Q.; Liu P.; Xu J.; Jiang J. Renewable Energy 2020, 162, 2113. |
[57] | Wagenhofer M.; Baráth E.; Gutiérrez O.; Lercher J. ACS Catal. 2017, 7, 1068. |
[58] | Foraita S.; Liu Y.; Haller G.; Barμth E.; Zhao C.; Lercher J. ChemCatChem 2017, 9, 195. |
[59] | Snåre M.; Kubičková I.; MäkiArvela P.; Eralnen K.; Murzin D. Ind. Eng. Chem. Res. 2006, 45, 5708. |
[60] | Han J.; Sun H.; Ding Y.; Lou H.; Zheng X. Green Chem. 2010, 12, 463. |
[61] | Kubička D.; Kaluža L. Appl. Catal. A: Gen. 2010, 372, 199. |
[62] | Haley R.; Tikhov M.; Lambert R. Catal. Lett. 2001, 76, 125. |
[63] | Ojagh H.; Creaser D.; Tamm S.; Arora P.; Nystro?m S.; Grennfelt E.; Olsson L. Ind. Eng. Chem. Res. 2017, 56, 5547. |
[64] | Wang H.; Li G.; Rogers K.; Lin H.; Zheng Y.; Ng S. Mol. Catal. 2017, 443, 22. |
[65] | Yoosuk B.; Sanggam P.; Wiengket S.; Prasassarakich P. Renewable Energy 2019, 139, 1391. |
[66] | Xu G.; Zhang Y.; Fu Y.; Guo Q. ACS Catal. 2017, 7, 1158. |
[67] | Grosso-Giordano N.; Eaton T.; Bo Z.; Yacob S.; Yang C.; Notestein J. Appl. Catal., B 2016, 192, 93. |
[68] | Liu Y.; Yang X.; Liu H.; Ye Y.; Wei Z. Appl. Catal., B 2017, 218, 679. |
[69] | Soni V.; Sharma P.; Choudhary G.; Pandey S.; Sharma R. ACS Sustainable Chem. Eng. 2017, 5, 5351. |
[70] | Horáček J.; Akhmetzyanova U.; Skuhrovcová L.; Tišler Z.; Carmona H. Appl. Catal., B 2020, 263, 118328. |
[71] | Zhang Z.; Jing M.; Chen H.; Okejiri F.; Liu J.; Leng Y.; Liu H. Song W.; Hou Z.; Lu X.; Fu J.; Liu J. ACS Catal. 2020, 10, 9098. |
[72] | Hachemi I.; Kumar N.; Mäki-Arvela P.; Roine J.; Peurla M.; Hemming J.; Salonen J.; Murzin D. J. Catal. 2017, 347, 205. |
[73] | Takeda Y.; Tamura M.; Nakagawa Y.; Okumura K.; Tomishige K. ACS Catal. 2015, 5, 7034. |
[74] | Chen H.; Yao S.; Lin W.; Zhang Z.; Hu X.; Liu X.; Yan B.; Chan K.; Qin Y.; Zhu Y.; Lu X.; Ouyang P.; Fu J.; Chen J. Chem. Eng. J. 2020, 390, 124603. |
[75] | Guo Z.; Zhou F.; Wang H.; Lu X.; Xu G.; Zhang Y.; Fu Y. Green Chem. 2019, 21, 5046. |
[76] | Zhang Z.; Yang Q.; Chen H.; Chen K.; Lu X.; Xu G.; Zhang Y.; Fu Y. Green Chem. 2018, 20, 197. |
[77] | Adira W.; Marliza T.; Asikin-Mijan N.; Gamal M.; Saiman M.; Ibrahim M.; Taufiq-Yap Y. RSC Adv. 2020, 10, 37218. |
[78] | Luo J.; Jia L.; Yan D.; Li J. Acta Chim. Sinica 2022, 80, 317.(in Chinese) |
[78] | (罗俊, 贾礼超, 颜冬, 李箭, 化学学报, 2022, 80, 317.) |
[79] | Han Q.; Rehman M.; Wang J.; Rykov A.; Gutiérrez O.; Zhao Y.; Wang S.; Ma X.; Lercher J. Appl. Catal., B 2019, 253, 348. |
[80] | Pan Z.; Wang R.; Chen J. Appl. Catal., B 2018, 224, 88. |
[81] | Zhao N.; Zheng Y.; Chen J. J. Energy Chem. 2020, 41, 194. |
[82] | Yang Y.; Wei M. J. Mater. Chem. A 2020, 8, 2207. |
[83] | Han D.; Yin W.; Luo D.; He H.; Wang S.; Xia S. Fuel 2021, 305, 121545. |
[84] | Wang L.; Niu X.; Chen J. Appl. Catal., B 2020, 278, 119293. |
[85] | Loe R.; Santillan-Jimenez E.; Morgan T.; Sewell L.; Ji Y.; Jones S.; Lsaacs M.; Lee A.; Crocker M. Appl. Catal., B 2016, 191, 147. |
[86] | Reangchim P.; Saelee T.; Itthibenchapong V.; Junkaew A.; Chanlek N.; Eiad-ua A.; Kungwan N.; Faungnawakij K. Catal. Sci. Technol. 2019, 9, 3361. |
[87] | Kordouli E.; Pawelec B.; Bourikas K.; Kordulis C.; Fierro J.; Lycourghiotis A. Appl. Catal., B 2018, 229, 139. |
[88] | Shim J.; Jeon K.; Jang W.; Na H.; Cho J.; Kim H.; Lee Y.; Jeong D.; Roh H.; Ko C. Appl. Catal., B 2018, 239, 644. |
[89] | Kandel K.; Chaudhary U.; Nelson N.; Slowing I. ACS Catal. 2015, 5, 6719. |
[90] | Tran C.; Akmach D.; Kaliaguine S. Green Chem. 2020, 22, 6424. |
[91] | Chen J.; Xu Q. Catal. Sci. Technol. 2016, 6, 7239. |
[92] | Liu M.; Shi Y.; Wu K.; Liang J.; Wu Y.; Huang S.; Yang M. Catal. Commun. 2019, 129, 105726. |
[93] | Xia Q.; Zhuang X.; Li M.; Peng Y.; Liu G.; Wu T.; Soo Y.; Gong X.; Wang Y.; Tsang S. Chem. Commun. 2016, 52, 5160. |
[94] | Kukushkin R.; Yeletsky P.; Grassin C.; Chen B.; Bulavchenko O.; Saraev A.; Yakovlev V. Chem. Eng. J. 2020, 396, 125202. |
[95] | Srifa A.; Faungnawakij K.; Itthibenchapong V.; Assabumrungrat S. Chem. Eng. J. 2015, 278, 249. |
[96] | Jeong H.; Bathula H.; Kim T.; Han B.; Jang J.; Jeong B.; Suh Y. ACS Sustainable Chem. Eng. 2021, 9, 1193. |
[97] | Vo T.; Kim W.; Kim S.; Yoo K.; Kim J. Energy Convers. Manage. 2018, 158, 92. |
[98] | Asikin-Mijan N.; Lee H.; Juan J.; Noorsaadah A.; Ong H.; Razali S.; Taufiq-Yap Y. Appl. Catal. A: Gen. 2018, 552, 38. |
[99] | Coumans A.; Hensen E. Catal. Today 2017, 298, 181. |
[100] | Li J.; Zhang J.; Wang S.; Xu G.; Wang H.; Vlachos D. ACS Catal. 2019, 9, 1564. |
[101] | Zhu Q.; Wang Y.; Wang L.; Yang Z.; Wang L.; Meng X.; Xiao F. Chin. J. Catal. 2020, 41, 1118. |
[102] | He L.; Yao Q.; Sun M.; Ma X. Acta Chim. Sinica 2022, 80, 180.(in Chinese) |
[102] | (何磊, 么秋香, 孙鸣, 马晓迅, 化学学报, 2022, 80, 180.) |
[103] | Schreiber M.; Rodriguez-Niño D.; Gutiérrez O.; Lercher J. Catal. Sci. Technol. 2016, 6, 7976. |
[104] | Wang D.; Ma B.; Wang B.; Zhao C.; Wu P. Chem. Commun. 2015, 51, 15102. |
[105] | Baharudin K.; Arumugam M.; Hunns J.; Lee A.; Mayes E.; Taufiq-Yap Y.; Wilson K.; Derawi D. Catal. Sci. Technol. 2019, 9, 6673. |
[106] | Yang Y.; Ochoa-Hernández C.; O’shea V.; Coronado J.; Serrano D. ACS Catal. 2012, 2, 592. |
[107] | Wang H.; Yan S.; Salley S.; Ng K. Fuel 2013, 111, 81. |
[108] | Rakmae S.; Osakoo N.; Pimsuta M.; Deekamwong K.; Keawkumay C.; Butburee T.; Faungnawakij K.; Geantet C.; Prayoonpokarach S.; Wittayakun J.; Khemthong P. Fuel Process. Technol. 2020, 198, 106236. |
[109] | Ouyang Q.; Yao J.; Yang N.; Wang Y.; Yao M.; Liu X. Catal. Commun. 2019, 120, 46. |
[110] | Ma B.; Yi X.; Chen L.; Zheng A.; Zhao C. J. Mater. Chem. A 2016, 4, 11330. |
[111] | Janampelli S.; Sethia G.; Darbha S. Catal. Sci. Technol. 2020, 10, 268. |
[112] | Ma B.; Zhao C. Green Chem. 2015, 17, 1692. |
[113] | Weisz P. Adv. Catal. 1962, 13, 137. |
[114] | Coumans A.; Hensen E. Appl. Catal., B 2017, 201, 290. |
[115] | Hachemi I.; Kumar N.; Mäki-Arvela P.; Roine J.; Peurla M.; Hemming J.; Salonen J.; Murzin D. J. Catal. 2017, 347, 205. |
[116] | Wang F.; He S.; Chen H.; Wang B.; Zheng L.; Wei M.; Evans D.; Duan X. J. Am. Chem. Soc. 2016, 138, 6298. |
[117] | Chen D.; Qiao M.; Lu Y.; Hao L.; Liu D.; Dong C.; Li Y.; Wang S. Angew. Chem., Int. Ed. 2018, 57, 8691. |
[118] | Wang Q.; Chen L.; Guan S.; Zhang X.; Wang B.; Cao X.; Yu Z.; He Y.; Evans D.; Feng J.; Li F. ACS Catal. 2018, 8, 3104. |
[119] | Zhang Y.; Zhu W.; Zhang L.; Gao X.; Luo Y.; Lu J. J. Chin. Rare Earths Soc. 2022, 40, 14.(in Chinese) |
[119] | (张迎, 朱文杰, 张黎明, 高晓亚, 罗永明, 陆继长, 中国稀土学报, 2022, 40, 14.) |
[120] | Li Z. Y.; Yang Y. S.; Wei M. Acta Chim. Sinica 2022, 80, 99.(in Chinese) |
[120] | (李泽洋, 杨宇森, 卫敏, 化学学报, 2022, 80, 99.) |
[121] | Cao X.; Long F.; Zhang G.; Xu J.; Jiang J. ACS Sustainable Chem. Eng. 2021, 9, 9789. |
[122] | Jiang S.; Ji N.; Diao X.; Li H.; Rong Y.; Lei Y.; Yu Z. ChemSusChem 2021, 14, 4377. |
[123] | Fu L.; Li Y.; Cui H.; Ba W.; Liu Y. Appl. Catal. A: Gen. 2021, 623, 118258. |
[124] | Hengsawad T.; Jindarat T.; Resasco D.; Jongpatiwut S. Appl. Catal. A: Gen. 2018, 566, 74. |
[125] | Zhou Y.; Liu X.; Yu P.; Hu C. Fuel 2020, 278, 118295. |
[126] | Ni J.; Leng W.; Mao J.; Wang J.; Lin J.; Jiang D.; Li X. Appl. Catal.,B 2019, 253, 170. |
[127] | Zhou Y.; Liu L.; Li G.; Hu C. ACS Catal. 2021, 11, 7099. |
[128] | Jia C.; Zhang C.; Xie S.; Zhang W.; Wang Z.; Lin H. Fuel 2021, 302, 121060. |
[129] | Xing S.; Liu Y.; Liu X.; Li F.; Fu J.; Liu P.; Lv P.; Wang Z. Appl. Catal.,B 2020, 269, 118718. |
[130] | Brillouet S.; Baltag E.; Brunet S.; Richard F. Appl. Catal.,B 2014, 148, 201. |
[131] | Gutierrez A.; Turpeinen E.; Viljava T.; Krause O. Catal. Today 2017, 285, 125. |
[132] | Zhang H.; Lin H.; Zheng Y. Appl. Catal.,B 2014, 160, 415. |
[133] | Arora P.; Ojagh H.; Woo J.; Grennfelt E.; Olsson L.; Creaser D. Appl. Catal., 2018, 227, 240. |
[134] | Yu R.; Hua Z.; Huang J. Ind. Miner. Process. 2022, 51, 1. |
[135] | Bi Y.; Yang Q.; Guo Q.; Li H.; Huang W. Pet. Process. Petrochem. 2022, 53, 16. |
[136] | Wang C.; Fan H.; Zong P.; Liu Z.; Wang M.; Zhai J. Petrochem. Technol. Appl. 2022, 40, 177. |
[137] | Zhang F.; Lv H.; Bian W.; Yuan L.; Wu P.; He G. Ind. Catal. 2022, 30, 58. |
[138] | Geng H.; Zhang F.; Gao Z.; Zhao L.; Zhou J. Catal. Today 2004, 93, 485. |
[139] | Gao S.; Zhao Z.; Lu X.; Chi K.; Duan A.; Liu Y.; Meng X.; Tan M.; Yu H.; Shen Y.; Li M. Pet. Sci. 2020, 17, 1752. |
/
〈 |
|
〉 |