综述

介观尺度多孔材料的电子显微学结构解析

  • 邓权政 ,
  • 毛文婷 ,
  • 韩璐
展开
  • a 同济大学化学科学与工程学院 上海 200092
    b 上海交通大学化学化工学院 金属基复合材料国家重点实验室 上海 200240

邓权政, 同济大学化学科学与工程学院2019级在读博士生, 本科毕业于同济大学, 现主要从事孔材料的电子显微学结构解析研究.

毛文婷, 2015年获得东华大学理学学士学位, 2021年获得上海交通大学(导师韩璐教授)理学博士学位.

韩璐, 同济大学化学科学与工程学院教授, 博士生导师. 2006年获上海交通大学理学学士学位, 2010年及2011年分别获得斯德哥尔摩大学及上海交通大学博士学位, 2011年入职上海交通大学, 2017年加入同济大学. 获2013年度全国优秀博士学位论文奖, 2014年度教育部自然科学奖一等奖(第二完成人), 2019年受自然科学基金优秀青年基金资助. 主要研究方向为介观结构材料的合成及电子显微学结构研究.

收稿日期: 2022-03-29

  网络出版日期: 2022-07-07

基金资助

国家自然科学基金(21922304); 国家自然科学基金(21873072); 上海自然科学基金(18ZR1442400)

Structural Solution of Porous Materials on the Mesostructural Scale by Electron Microscopy

  • Quanzheng Deng ,
  • Wenting Mao ,
  • Lu Han
Expand
  • a School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
    b School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
* E-mail: ; Tel.: 021-55234224

Received date: 2022-03-29

  Online published: 2022-07-07

Supported by

National Natural Science Foundation of China(21922304); National Natural Science Foundation of China(21873072); Natural Science Foundation of Shanghai(18ZR1442400)

摘要

孔径在介观尺度的多孔材料由于其规整的孔道结构、大比表面积、特殊的空间限域效应使其在吸附、分离、催化、传感、载药、能源等领域都具有广阔的应用前景. 深入解析材料的结构特征不仅是理解其物理化学性能和应用的关键, 也是研究材料的形成机理及新材料制备的重要反馈和支持. 电子显微学以电子为探针, 通过电子衍射和高分辨像对材料结构展开探索, 可以研究更小尺寸晶体的结构, 揭示局部结构信息如缺陷及共生等, 对介观尺度多孔材料的结构解析至关重要. 对近年来通过电子显微学方法解析的介观尺度多孔材料工作进行了综述, 主要针对有序介孔材料以及有序大孔材料展开, 归纳了不同结构类型的介观尺度多孔材料所适用的电子晶体学方法, 在此基础上提出电子显微学在介观尺度孔材料结构解析上的优势、不足和未来发展的方向, 以及将电子显微学用于其它材料结构解析的可行性.

本文引用格式

邓权政 , 毛文婷 , 韩璐 . 介观尺度多孔材料的电子显微学结构解析[J]. 化学学报, 2022 , 80(8) : 1203 -1216 . DOI: 10.6023/A22030136

Abstract

Ordered porous materials on the meso-structural scale have attracted great attention due to their ordered porous structure, large surface area and unique spatial confinement effect, which may find widespread applications in adsorption, separation, catalysis, sensing, drug delivery, energy storage, etc. The in-depth analysis of the structural characteristics of these porous materials is not only essential for understanding their properties and performances, but also the key for the future materials synthesis and their formation mechanism. The structural solution of porous materials on the meso-structural scale by using electron microscopy for last decades was outlined, which shows great advantages in the structural solution of the porous solids through diffractometry and imaging. Several representative examples including ordered mesoporous materials and macro-porous scaffolds, have been solved by appropriate methods. Then, the electron microscopy methods applicable to different types of porous materials were summarized. Finally, the advantages, limitations and future development of electron microscopy towards new porous materials, as well as the feasibility of using this technique for other materials were concluded.

参考文献

[1]
Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 59, 710.
[2]
Huo, Q.; Margolese, D. I.; Ciesia, U.; Demuth, D. G.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Firouzi, A. Chem. Mater. 1994, 6, 1176.
[3]
Wan, Y.; Zhao, D. Chem. Rev. 2007, 107, 2821.
[4]
Terasaki, O.; Liu, Z.; Ohsuna, T.; Shin, H. J.; Ryoo, R. Microsc. Microanal. 2002, 8, 35.
[5]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; G. Fredrickson, H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[6]
Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304.
[7]
Che, S.; Liu, Z.; Ohsuna, T. Nature 2004, 429, 281.
[8]
Qiu, H.; Che, S. J. Phys. Chem. B 2008, 112, 10466.
[9]
Qiu, H.; Wang, S.; Zhang, W.; Sakamoto, K.; Terasaki, O.; Inoue, Y.; Che, S. J. Phys. Chem. C 2008, 112, 1871.
[10]
Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
[11]
Garcia-Bennett, A. E.; Che, S.; Tatsumi, T.; Terasaki, O. Chem. Mater. 2004, 16, 813.
[12]
Garcia-Bennett, A. E.; Kupferschmidt, N.; Sakamoto, Y.; Che, S.; Terasaki, O. Angew. Chem. Int. Ed. 2005, 44, 5317.
[13]
Xiao, C.; Fujita, N.; Miyasaka, K.; Sakamoto, Y.; Terasaki, O. Nature 2012, 487, 349.
[14]
Carlsson, A.; Kaneda, M.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.; Joo, S. H. J. Electron. Microsc. 1999, 48, 795.
[15]
Gao, C.; Sakamoto, Y.; Sakamoto, K.; Terasaki, O.; Che, S. Angew. Chem. Int. Ed. 2006, 45, 4295.
[16]
Han, Y.; Zhang, D.; Chng, L.; Sun, J.; Zhao, L.; Zou, X. Nature Chem. 2009, 1, 123.
[17]
Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
[18]
Tüysüz, H.; Lehmann, C. W.; Bongard, H.; Tesche, B.; Schmidt, R.; Schüth, F. J. Am. Chem. Soc. 2008, 130, 11510.
[19]
Kielman, T.; Asahina, S.; Schmitt, J.; Impéror-Clerc, M.; Terasaki, O.; Alfreason, V. Chem. Mater. 2013, 25, 4105.
[20]
Qiu, H.; Sakamoto, Y.; Terasaki, O.; Che, S. A. Adv. Mater. 2008, 20, 425.
[21]
Jin, C.; Han, L.; Che, S. Angew. Chem. Int. Ed. 2009, 48, 9268.
[22]
Aubert, T.; Ma, K.; Tan, K.; Winsner, U. Adv. Mater. 2020, 32, 1908362.
[23]
Xi, X.; Wu, D.; Han, L.; Yu, Y.; Su, Y.; Tang, W.; Liu, R. ACS Nano 2018, 12, 5436.
[24]
Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449.
[25]
Huo, Q.; Margolese, D.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317.
[26]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[27]
Sakamoto, Y.; Díaz, I.; Terasaki, O.; Zhao, D. Y.; PérezPariente, J.; Kim, J.; Galen, D.; Stucky, G. D. J. Phys. Chem. B 2002, 106, 3118.
[28]
Miyasaka, K.; Han, L.; Che, S.; Terasaki, O.; Angew. Chem. Int. Ed. 2006, 45, 6516.
[29]
Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S. J. Mater. Chem. 2007, 17, 1216.
[30]
Ma, Y.; Han, L.; Miyasaka, K.; Oleynikov, P.; Che, S.; Terasaki, O. Chem. Mater. 2013, 25, 2184.
[31]
Alfonso, E.; Garcia-Bennett, A. E.; Miyasaka, K.; Terasaki, O.; Che, S. Chem. Mater. 2004, 16, 3597.
[32]
Han, L.; Sakamoto, Y.; Che, S.; Terasaki, O. Chem.- Eur. J. 2009, 15, 2818.
[33]
Sakamoto, Y.; Terasaki, O. Solid State Sciences 2011, 13, 762.
[34]
Ohsuna, T.; Sakamoto, Y.; Terasaki, O.; Kuroda, K. Solid State Sci. 2011, 13, 736.
[35]
Sakamoto, Y.; Han, L.; Che, S.; Terasaki, O. Chem. Mater. 2009, 21, 223.
[36]
Che, S.; Lim, S.; Kaneda, M.; Yoshitake, H.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2002, 124, 13962.
[37]
Che, S.; Kamiya, S.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2001, 123, 12089.
[38]
Han, L.; Xiong, P.; Bai, J.; Che, S. J. Am. Chem. Soc. 2011, 133, 6106.
[39]
Sun, Y.; Ma, K.; Kao, T.; Spoth, K. A.; Sai, H.; Zhang, D.; Kourkoutis, L. F.; Elser, V.; Wiesner, U. Nat. Commun. 2017, 8, 252.
[40]
Wang, Y.; Deng, Q. Z.; Fujita, N.; Han, L. Chem. Mater. 2020, 32, 5236.
[41]
Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B 2002, 106, 1256.
[42]
Miyasaka, K.; Terasaki, O. Angew. Chem. Int. Ed. 2010, 49, 8867.
[43]
Han, L.; Miyasaka, K.; Terasaki, O.; Che, S.; J. Am. Chem. Soc. 2011, 133, 11542.
[44]
Harold, M. P. MRS Bull. 1994, 19, 34.
[45]
Wu, M. X.; Fujiu, T.; Messing, G. L. Solids 1990, 121, 407.
[46]
Litovsky, E.; Shapiro, M.; Shavit, A. J. Am. Ceram. Soc. 1996, 79, 1366.
[47]
Zhang, Y.; Yu, S.; Lou, G. B.; Shen, Y. L.; Chen, H.; Shen, Z. H.; Zhao, S. Y.; Zhang, J. Z.; Chai, S. G.; Zou, Q. C. J. Mater. Sci. 2017, 52, 11201.
[48]
Wilts, B.; Zubiri, B.; Klatt, M.; Butz, B.; Fischer, M.; Kelly, S.; Spiecher, E.; Striner, U.; Schröder-turk, A. Sci. Adv. 2017, 3, e1603119.
[49]
Kobayashi, Y.; Yoshioka, S. J. R. Soc. Interface 2021, 18, 20210505.
[50]
Velev, O. D.; Jede, T. A.; Lobo, R. F. Nature 1997, 389, 447.
[51]
Judith, E. G. J.; Wijnhoven; Willem, L. V. Science 1998, 281, 802.
[52]
Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z. Science 1998, 282, 897.
[53]
Han, L.; Xu, D. P.; Liu, Y.; Ohsuna, T.; Yao, Y.; Jiang, C.; Mai, Y. Y.; Cao, Y. Y.; Duan, Y. Y.; Che, S. Chem. Mater. 2014, 26, 7020.
[54]
Mao, W. T.; Cao, X.; Sheng, Q. Q.; Han, L.; Che, S. Angew. Chem., Int. Ed. 2017, 56, 10670.
[55]
Cao, X.; Xu, D.; Yao, Y.; Han, L.; Terasaki, O.; Che, S. Chem. Mater. 2016, 28, 3691.
[56]
Sheng, Q.; Chen, H.; Mao, W. T.; Cui, C. C.; Che, S.; Han, L. Angew. Chem. Int. Ed. 2021, 60, 15236.
[57]
Mao, W.; Bao, C.; Han, L. Microsc. Microanal. 2021, 27, 996.
[58]
Yu, Y.; Liu, S.; Li, J.; Chen, Q. Y. Acta Phys.-Chim. Sin. 2009, 25, 1890. (in Chinese)
[58]
(于勇, 刘世军, 李杰, 陈启元, 物理化学学报, 2009, 25, 1890.)
[59]
Wei, F.; Zhang, Q.; Wu, H.; Cao, C.; Song, W. Science China Chemistry 2017, 60, 1588.
[60]
Huang, M.; Yue, K.; Wang, J.; Hsu, C.; Wang, L.; Cheng, Z. Science China Chemistry 2018, 61, 33.
[61]
Su, Z.; Chen, Q.; Li, J.; Liu, S. Acta Phys.-Chim. Sinica 2007, 23, 1760. (in Chinese)
[61]
(苏兆辉, 陈启元, 李杰, 刘世军, 物理化学学报, 2007, 23, 1760.)
[62]
Sun, B.; Guo, Y.; Xu, L.; Huang, Z.; Wu, P.; Che, S. Acta Chim. Sinica 2012, 70, 2419.
[63]
Li, M.; Yu, J. Acta Chim. Sinica 2011, 69, 226. (in Chinese)
[63]
(李猛, 俞建长, 化学学报, 2011, 69, 226.)
[64]
Zhang, R.; Yang, C. Acta Chim. Sinica 2006, 64, 2165. (in Chinese)
[64]
(张蓉芳, 杨春, 化学学报, 2006, 64, 2165.)
[65]
Guo, B.; Wu, H.; Chen, J.; Wang, J.; Wei, H.; Mai, Y. CCS Chem. 2020, 2, 1410.
[66]
Xu, Z.; Li, L.; Chen, X.; Fang, C.; Xiao, G. CCS Chem. 2021, 3, 3514.
[67]
Sun, T.; Lei, W.; Ma, Y. H.; Zhang, Y. B. Chin. J. Chem. 2020, 38, 1153.
[68]
Jinschek, J. R.; Helveg, S. Micron 2012, 43, 1156.
[69]
Möebus, G.; Doole, R. C.; Inkson, B. J. Ultramicroscopy 2003, 96, 433.
[70]
Zewail, A. H. Science 2010, 328, 187.
[71]
Pennycook, S.; Boatner, L. Nature 1988, 336, 567.
[72]
Stefan, W. Science 2007, 316, 1153.
[73]
Cullis, A.; Canham, L. Nature 1991, 353, 335.
[74]
Midgley, P. A.; Weyland, M. Ultramicroscopy 2003, 96, 413.
[75]
Peter, B.; Yang, D. S.; Zewail, A. H. Science 2007, 318, 788.
文章导航

/