稀土和锕系配合物促进的氮气活化与转化研究
收稿日期: 2022-06-06
网络出版日期: 2022-07-08
基金资助
国家自然科学基金(21988101); 北京市自然科学基金(2222008)
Dinitrogen Activation and Transformation Promoted by Rare Earth and Actinide Complexes
Received date: 2022-06-06
Online published: 2022-07-08
Supported by
National Natural Science Foundation of China(21988101); Beijing Natural Science Foundation(2222008)
氮气分子具有高的化学惰性, 氮气的活化与转化充满挑战. 含氮有机物在国民经济发展中具有广泛且重要的价值, 实现温和条件下由氮气直接转化为含氮有机物在科学和经济上均具有重要意义. 目前对氮气的活化与转化的研究主要集中在主族与过渡金属配合物, 稀土和锕系元素由于具有特殊的电子结构, 在氮气的活化与转化领域展现出了区别于主族和过渡金属的特殊反应活性. 我国作为稀土和钍资源大国, 开展稀土及锕系元素的固氮转化研究具有重要的战略意义. 本综述归纳和总结了过去五年内稀土和锕系金属氮气配合物的合成, 以及由稀土和锕系配合物促进的以氮气为原料生成含氮有机物的研究.
陈霄 , 许汉华 , 石向辉 , 魏俊年 , 席振峰 . 稀土和锕系配合物促进的氮气活化与转化研究[J]. 化学学报, 2022 , 80(9) : 1299 -1308 . DOI: 10.6023/A22060253
Dinitrogen gas is highly chemically inert, and the activation and transformation of dinitrogen are challenging. Nitrogen-containing organic compounds have extensive and important applications in developing the national economy. It is of great scientific and economic significance to realize the direct conversion from dinitrogen to nitrogen-containing organic compounds under mild conditions. The activation and transformation of dinitrogen via metal-nitrogen complexes are one of the research hotspots, and chemists have made significant achievements in this field during the past decades. The current research on the activation and transformation of dinitrogen mainly focuses on the main group and transition metal complexes. In contrast, the research on rare earth (RE) and actinide (An) metal-nitrogen complexes is relatively less. Although nearly one hundred crystal structures of rare earth and actinide metal-dinitrogen complexes have been reported, the vast majority of them cannot undergo further nitrogen derivatization reactions, and the types of the supporting ligands are still limited. However, due to the unique electronic structures, f-block complexes can exhibit unusual reactivity different from the main group and transition metals. For example, the f-block metals do not necessarily have to stay in a low oxidation state to activate the dinitrogen, which may lead to the discovery of new dinitrogen transformation modes. As China is rich in rare earth and thorium resources, it is vital to carry out research on dinitrogen fixation and transformation based on rare earth metals and actinides. The synthesis of rare earth and actinide dinitrogen complexes over the past five years, as well as the progress on the generation of nitrogen-containing organic compounds from dinitrogen gas promoted by rare earth and actinide complexes were summarized in this review.
[1] | Tanabe Y.; Nishibayashi Y. In Transition Metal-Dinitrogen Complexes, Ed.: Nishibayashi, Y., Wiley-VCH, Weinheim, 2019, Chapter 1. |
[2] | Kuriyama S.; Wei S.; Tanaka H.; Konomi A.; Yoshizawa K.; Nishibayashi Y. Inorg. Chem. 2022, 61, 5190. |
[3] | McSkimming A.; Suess D. L. M. Nat. Chem. 2021, 13, 666. |
[4] | Wagner H. K.; Wadepohl H.; Ballmann J. Angew. Chem. Int. Ed. 2021, 60, 25804. |
[5] | Mo Z.; Shima T.; Hou Z. Angew. Chem. Int. Ed. 2020, 59, 8635. |
[6] | Zhuo Q.; Yang J.; Mo Z.; Zhou X.; Shima T.; Luo Y.; Hou Z. J. Am. Chem. Soc. 2022, 144, 6972. |
[7] | Shima T.; Yang J.; Luo G.; Luo Y.; Hou Z. J. Am. Chem. Soc. 2020, 142, 9007. |
[8] | Shima T.; Hu S.; Luo G.; Kang X.; Luo Y.; Hou Z. Science 2013, 340, 1549. |
[9] | Lv Z.-J.; Huang Z.; Zhang W.-X.; Xi Z. J. Am. Chem. Soc. 2019, 141, 8773. |
[10] | Li D.; Zan L.; Chen S.; Shi Z.-J.; Chen P.; Xi Z.; Deng D. Natl. Sci. Rev. 2022, DOI: 10.1093/nsr/nwac042. |
[11] | Kim S.; Loose F.; Chirik P. J. Chem. Rev. 2020, 120, 5637. |
[12] | Lv Z.-J.; Wei J.; Zhang W.-X.; Chen P.; Deng D.; Shi Z.-J.; Xi Z. Natl. Sci. Rev. 2020, 7, 1564. |
[13] | Tanabe Y.; Nishibayashi Y. Coord. Chem. Rev. 2019, 389, 73. |
[14] | Kuriyama S.; Nishibayashi Y. Tetrahedron 2021, 83, 131986. |
[15] | Singh D.; Buratto W. R.; Torres J. F.; Murray L. J. Chem. Rev. 2020, 120, 5517. |
[16] | Forrest S. J. K.; Schluschaß B.; Yuzik-Klimova E. Y.; Schneider S. Chem. Rev. 2021, 121, 6522. |
[17] | Yang J.-H.; Peng M.; Zhai D.-D.; Xiao D.; Shi Z.-J.; Yao S.; Ma D. ACS Catalysis 2022, 12, 2898. |
[18] | Li J.-P.; Yin J.-H.; Yu C.; Zhang W.-X.; Xi Z.-F. Acta Chim. Sinica 2017, 75, 733.(in Chinese) |
[18] | (李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.) |
[19] | Nishibayashi Y. Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, Wiley-VCH, Weinheim, 2019. |
[20] | Légaré M.-A.; Bélanger-Chabot G.; Dewhurst R. D.; Welz E.; Krummenacher I.; Engels B.; Braunschweig H. Science 2018, 359, 896. |
[21] | Rösch B.; Gentner T. X.; Langer J.; Färber C.; Eyselein J.; Zhao L.; Ding C.; Frenking G.; Harder S. Science 2021, 371, 1125. |
[22] | Légaré M.-A.; Rang M.; Bélanger-Chabot G.; Schweizer J. I.; Krummenacher I.; Bertermann R.; Arrowsmith M.; Holthausen M. C.; Braunschweig H. Science 2019, 363, 1329. |
[23] | Xu B.; Beckers H.; Ye H.; Lu Y.; Cheng J.; Wang X.; Riedel S. Angew. Chem. Int. Ed. 2021, 60, 17205. |
[24] | Liu T.-T.; Zhai D.-D.; Guan B.-T.; Shi Z.-J. Chem. Soc. Rev. 2022, 51, 3846. |
[25] | Gao Y.; Li G.; Deng L. J. Am. Chem. Soc. 2018, 140, 2239. |
[26] | Zhong M.; Cui X.; Wu B.; Wang G.-X.; Zhang W.-X.; Wei J.; Zhao L.; Xi Z. CCS Chemistry 2022, 4, 532. |
[27] | Wang G.-X.; Yin J.; Li J.; Yin Z.-B.; Wu B.; Wei J.; Zhang W.-X.; Xi Z. CCS Chemistry 2021, 3, 308. |
[28] | Fan Y.-M.; Cheng J.; Gao Y.-F.; Shi M.; Deng L. Acta Chim. Sinica 2018, 76, 445.(in Chinese) |
[28] | (凡一明, 程骏, 高亚飞, 施敏, 邓亮, 化学学报, 2018, 76, 445.) |
[29] | Bai Y.; Zhang J.; Cui C.-M. Chem. Commun. 2018, 54, 8124. |
[30] | Bai Y.-P.; Cui C.-M. Acta Chim. Sinica 2020, 78, 763.(in Chinese) |
[30] | (白云平, 崔春明, 化学学报, 2020, 78, 763.) |
[31] | Li S.-Z.; Ouyang Z.-W.; Zou J.-J.; Wang D.-Y.; Xu B.; Deng L. Acta Chim. Sinica 2022, 80, 272.(in Chinese) |
[31] | (李尚钊, 欧阳振武, 邹俊杰, 王东阳, 许斌, 邓亮, 化学学报, 2022, 80, 272.) |
[32] | Zhang G.; Liu T.; Song J.; Quan Y.; Jin L.; Si M.; Liao Q. J. Am. Chem. Soc. 2022, 144, 2444. |
[33] | Song J.; Liao Q.; Hong X.; Jin L.; Mézailles N. Angew. Chem. Int. Ed. 2021, 60, 12242. |
[34] | Wang Q.; Pan J.; Guo J.; Hansen H. A.; Xie H.; Jiang L.; Hua L.; Li H.; Guan Y.; Wang P.; Gao W.; Liu L.; Cao H.; Xiong Z.; Vegge T.; Chen P. Nat. Catal. 2021, 4, 959. |
[35] | Cui C.; Jia Y.; Zhang H.; Geng L.; Luo Z. CCS Chemistry 2022, DOI: 10.31635/ccschem.022.202201879. |
[36] | Xu X.; Zhao X.; Tang J.; Duan Y.; Tian Y.-H. Angew. Chem. Int. Ed. 2022, 61, e202203680. |
[37] | Wang Q.; Guan Y.; Guo J.; Chen P. Cell Rep. Phys. Sci. 2022, 3, 100779. |
[38] | Hu K.-Q.; Qiu P.-X.; Zeng L.-W.; Hu S.-X.; Mei L.; An S.-W.; Huang Z.-W.; Kong X.-H.; Lan J.-H.; Yu J.-P.; Zhang Z.-H.; Xu Z.-F.; Gibson J. K.; Chai Z.-F.; Bu Y.-F.; Shi W.-Q. Angew. Chem. Int. Ed. 2020, 59, 20666. |
[39] | Sun Y.; Ding S.; Xia B.; Duan J.; Antonietti M.; Chen S. Angew. Chem. Int. Ed. 2022, 61, e202115198. |
[40] | Song Q.; Sun C.; Wang Z.; Bai X.; Wu K.; Li Q.; Zhang H.; Zhou L.; Pang H.; Liang Y.; Yue S.; Zhao Z. Mater. Today Phys. 2021, 21, 100563. |
[41] | Jori N.; Toniolo D.; Huynh B. C.; Scopelliti R.; Mazzanti M. Inorg. Chem. Front. 2020, 7, 3598. |
[42] | Willauer A. R.; Dabrowska A. M.; Scopelliti R.; Mazzanti M. Chem. Commun. 2020, 56, 8936. |
[43] | Bayer U.; Anwander R. Dalton Trans. 2020, 49, 17472. |
[44] | Simler T.; Feuerstein T. J.; Yadav R.; Gamer M. T.; Roesky P. W. Chem. Commun. 2019, 55, 222. |
[45] | Evans W. J. J. Organomet. Chem. 2002, 652, 61. |
[46] | La Pierre H. S.; Meyer K. In Progress in Inorganic Chemistry, Vol. 58, Ed.: Karlin, K. D., Wiley-VCH, Weinheim, 2014, Chapter 5. |
[47] | Fox A. R.; Bart S. C.; Meyer K.; Cummins C. C. Nature 2008, 455, 341. |
[48] | Liddle S. T. Angew. Chem. Int. Ed. 2015, 54, 8604. |
[49] | Arnold P. L. Chem. Commun. 2011, 47, 9005. |
[50] | Haber F. Z. Elektrochem. Angew. Phys. Chem. 1910, 16, 244. |
[51] | Haber F. Angew. Chem. Int. Ed. 1914, 27, 473. |
[52] | Haber F.; Greenwood H. C. Z. Elektrochem. Angew. Phys. Chem. 1915, 21, 241. |
[53] | Bochkarev M. N.; Trifonov A. A.; Razuvaev G. A.; Ilatovskaya M. A.; Shur V. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1986, 1898. |
[54] | Ryan A. J.; Balasubramani S. g.; Ziller J. W.; Furche F.; Evans W. J. J. Am. Chem. Soc. 2020, 142, 9302. |
[55] | Woen D. H.; Chen G. P.; Ziller J. W.; Boyle T. J.; Furche F.; Evans W. J. J. Am. Chem. Soc. 2017, 139, 14861. |
[56] | Evans W. J.; Lee D. S.; Ziller J. W.; Kaltsoyannis N. J. Am. Chem. Soc. 2006, 128, 14176. |
[57] | Gardiner M. G.; Stringer D. N. Materials 2010, 3, 841. |
[58] | Campazzi E.; Solari E.; Scopelliti R.; Floriani C. Chem. Commun. 1999, 1617. |
[59] | Campazzi E.; Solari E.; Floriani C.; Scopelliti R. Chem. Commun. 1998, 2603. |
[60] | Cheng J.; Takats J.; Ferguson M. J.; McDonald R. J. Am. Chem. Soc. 2008, 130, 1544. |
[61] | Jubb J.; Gambarotta S. J. Am. Chem. Soc. 1994, 116, 4477. |
[62] | Turner Z. R. Inorganics 2015, 3, 597. |
[63] | Gardner B. M.; Liddle S. T. Eur. J. Inorg. Chem. 2013, 2013, 3753. |
[64] | Zhu Q.; Fang W.; Maron L.; Zhu C. Acc. Chem. Res. 2022, 55, 1718. |
[65] | Mansell S. M.; Kaltsoyannis N.; Arnold P. L. J. Am. Chem. Soc. 2011, 133, 9036. |
[66] | Cloke F. G. N.; Hitchcock P. B. J. Am. Chem. Soc. 2002, 124, 9352. |
[67] | Odom A. L.; Arnold P. L.; Cummins C. C. J. Am. Chem. Soc. 1998, 120, 5836. |
[68] | Evans W. J. Inorg. Chem. 2007, 46, 3435. |
[69] | Kovács A. Int. J. Quantum Chem. 2020, 120, e26051. |
[70] | Lu E.; Atkinson B. E.; Wooles A. J.; Boronski J. T.; Doyle L. R.; Tuna F.; Cryer J. D.; Cobb P. J.; Vitorica-Yrezabal I. J.; Whitehead G. F. S.; Kaltsoyannis N.; Liddle S. T. Nat. Chem. 2019, 11, 806. |
[71] | Hirotsu M.; Fontaine P. P.; Zavalij P. Y.; Sita L. R. J. Am. Chem. Soc. 2007, 129, 12690. |
[72] | Chirik P. J. Nat. Chem. 2009, 1, 520. |
[73] | Evans W. J.; Ulibarri T. A.; Ziller J. W. J. Am. Chem. Soc. 1988, 110, 6877. |
[74] | Trifonov A. A.; Bochkarev M. N.; Razuvaev G. A. Zh. Obshch. Khim. 1988, 58, 931. |
[75] | Dubé T.; Ganesan M.; Conoci S.; Gambarotta S.; Yap G. P. A. Organometallics 2000, 19, 3716. |
[76] | Bérubé C. D.; Yazdanbakhsh M.; Gambarotta S.; Yap G. P. A. Organometallics 2003, 22, 3742. |
[77] | Evans W. J.; Lee D. S.; Ziller J. W. J. Am. Chem. Soc. 2004, 126, 454. |
[78] | Tanabe Y. In Transition Metal-Dinitrogen Complexes, Ed.: Nishibayashi, Y., Wiley-VCH, Weinheim, 2019, Chapter 9. |
[79] | Ullstad F.; Bioletti G.; Chan J. R.; Proust A.; Bodin C.; Ruck B. J.; Trodahl J.; Natali F. ACS Omega 2019, 4, 5950. |
[80] | Yan H.; Gao W.; Cui J.; Zhang W.; Pei Q.; Wang Q.; Guan Y.; Feng S.; Wu H.; Cao H.; Guo J.; Chen P. J. Energy Chem. 2022, DOI: 10.1016/j.jechem.2022.04.011. |
[81] | Ye T.-N.; Park S.-W.; Lu Y.; Li J.; Wu J.; Sasase M.; Kitano M.; Hosono H. J. Am. Chem. Soc. 2021, 143, 12857. |
[82] | Evans W. J.; Lee D. S. Can. J. Chem. 2005, 83, 375. |
[83] | Roussel P.; Scott P. J. Am. Chem. Soc. 1998, 120, 1070. |
[84] | Evans W. J.; Kozimor S. A.; Ziller J. W. J. Am. Chem. Soc. 2003, 125, 14264. |
[85] | Arnold P. L.; Ochiai T.; Lam F. Y. T.; Kelly R. P.; Seymour M. L.; Maron L. Nat. Chem. 2020, 12, 654. |
[86] | Xin X.; Douair I.; Zhao Y.; Wang S.; Maron L.; Zhu C. J. Am. Chem. Soc. 2020, 142, 15004. |
[87] | Wang P.; Douair I.; Zhao Y.; Wang S.; Zhu J.; Maron L.; Zhu C. Angew. Chem. Int. Ed. 2021, 60, 473. |
[88] | Falcone M.; Chatelain L.; Scopelliti R.; Z?ivković I.; Mazzanti M. Nature 2017, 547, 332. |
[89] | Panthi D.; Adeyiga O.; Dandu N. K.; Odoh S. O. Inorg. Chem. 2019, 58, 6731. |
[90] | Falcone M.; Barluzzi L.; Andrez J.; Fadaei Tirani F.; Z?ivković I.; Fabrizio A.; Corminboeuf C.; Severin K.; Mazzanti M. Nat. Chem. 2019, 11, 154. |
[91] | Jori N.; Barluzzi L.; Douair I.; Maron L.; Fadaei-Tirani F.; Z?ivković I.; Mazzanti M. J. Am. Chem. Soc. 2021, 143, 11225. |
/
〈 |
|
〉 |