综述

基于单体设计的可回收高分子研究进展

  • 蔡中正 ,
  • 刘野 ,
  • 陶友华 ,
  • 朱剑波
展开
  • a 四川大学化学学院 环保型高分子材料国家地方联合工程实验室 成都 610064
    b 大连理工大学 精细化工国家重点实验室 大连 116024
    c 中国科学院长春应用化学研究所 中科院生态环境高分子材料重点实验室 长春 130022

蔡中正, 四川大学化学学院特聘副研究员、硕士生导师. 2013年于中国人民大学获得化学学士学位. 2018年获美国休斯顿大学理学专业博士学位(导师: Loi H. Do). 2019年至2021年在美国俄亥俄州立大学从事博士后工作(合作导师: Casey R. Wade). 2021年加入四川大学化学学院. 目前主要研究方向为高分子聚合催化剂的设计以及高性能可循环高分子的合成.

刘野, 大连理工大学精细化工国家重点实验室研究员, 博士生导师. 2008年于大连理工大学化工学院获得学士学位, 2014年于大连理工大学获得应用化学工学博士学位(导师: 吕小兵教授), 并留校任教至今. 2016年至2018年在德国康斯坦茨大学从事洪堡博士后研究(合作导师: Stefan Mecking). 主要研究方向包括配位催化和羰化聚合等.

陶友华, 中国科学院长春应用化学研究所研究员, 博士生导师. 2008年于中国科学院长春应用化学研究所获得高分子化学与物理的理学博士学位, 导师为王献红研究员. 曾在日本名古屋大学(合作导师: Masami Kamigaito)、美国科罗拉多大学博尔德分校(合作导师: Christopher N. Bowman)以及德克萨斯理工大学从事博士后研究. 2013年加入中国科学院长春应用化学研究所独立开展研究工作. 主要研究方向包括氨基酸高分子合成化学、有机催化开环聚合等.

朱剑波, 四川大学化学学院特聘研究员, 博士生导师. 2009年于四川大学化学学院获得学士学位, 2014年于中国科学院上海有机化学研究所获得有机化学博士学位(导师: 唐勇院士). 2014年至2019年在美国科罗拉多州立大学从事博士后研究(合作导师: Eugene Y.-X Chen). 2019年加入四川大学化学学院独立开展研究工作. 主要研究方向包括环境友好高分子合成、立体选择性聚合催化剂设计等.

* 作者排名不分先后, 以姓氏汉语拼音为序; E-mail: ;

收稿日期: 2022-05-23

  网络出版日期: 2022-07-15

基金资助

国家重点研发计划(2021YFA1501700); 国家自然科学基金(51903177); 国家自然科学基金(21871036); 国家自然科学基金(52073274)

Recent Advances in Monomer Design for Recyclable Polymers

  • Zhongzheng Cai ,
  • Ye Liu ,
  • Youhua Tao ,
  • Jian-Bo Zhu
Expand
  • a National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
    b State Key of Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
    c Key Laboratory of Polymeric Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Received date: 2022-05-23

  Online published: 2022-07-15

Supported by

National Key Research and Development Program of China(2021YFA1501700); National Natural Science Foundation of China(51903177); National Natural Science Foundation of China(21871036); National Natural Science Foundation of China(52073274)

摘要

现代社会的发展越来越依赖高分子材料, 但其大量使用后不当处置不仅造成资源浪费, 更造成严重的生态环境问题. 将废弃高分子材料解聚回单体, 然后通过聚合反应重新生成与解聚之前等值的高分子材料, 实现高分子材料循环利用被认为是解决上述问题的重要手段之一. 近年来, 通过单体设计发展“理想单体”从而调节“聚合—解聚”平衡, 实现温和条件下高分子材料闭环回收的策略取得了长足进展. 本文将从闭环回收聚酯、聚碳酸酯、含硫聚合物、聚环状烯烃等方面进行综述, 并对该领域的挑战和未来发展方向进行简要讨论.

本文引用格式

蔡中正 , 刘野 , 陶友华 , 朱剑波 . 基于单体设计的可回收高分子研究进展[J]. 化学学报, 2022 , 80(8) : 1165 -1182 . DOI: 10.6023/A22050235

Abstract

The development of modern society highly depends on polymer materials. However, progressive usage and accumulation of polymer products caused the waste of resources and severe environmental issues. To address the abovementioned problem, the development of chemical recycling polymers that could transform the polymers back to monomers and repolymerize to produce polymer materials without value loss is an attractive and important strategy. In recent years, significant advances in the design of “ideal monomers” have enabled the regulation of “polymerization-depolymerization” equilibrium and achieved the closed-loop recycling under mild conditions. This review will focus on the closed-loop recycling of polyesters, polycarbonates, sulfur-containing polymers, and poly(cyclic olefin)s, illustrate the challenges of this field, and provide a perspective on the future development direction.

参考文献

[1]
Singh Jadaun, J.; Bansal, S.; Sonthalia, A.; Rai, A. K.; Singh, S. P. Bioresour. Technol. 2022, 347, 126697.
[2]
PlasticsEurope,Plastics - the Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data, PlasticsEurope, 2019.
[3]
Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L. Science 2015, 347, 768.
[4]
Stubbins, A.; Law, K. L.; Munoz, S. E.; Bianchi, T. S.; Zhu, L. Science 2021, 373, 51.
[5]
Santos, R. G.; Machovsky-Capuska, G. E.; Andrades, R. Science 2021, 373, 56.
[6]
MacLeod, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. Science 2021, 373, 61.
[7]
Geyer, R.; Jambeck, J. R.; Law, K. L. Sci. Adv. 2017, 3, 25.
[8]
Zheng, J.; Suh, S. Nat. Clim. Chang. 2019, 9, 374.
[9]
World Economic Forum. The New Plastics Economy: Rethinking the Future of Plastics & Catalysing Action, Ellen MacArthur Foundation and McKinsey & Company. https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action.
[10]
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y.-X.; Leibfarth, F. A.; Sardon, H. Nature 2022, 603, 803.
[11]
Zhang, F.; Wang, F.; Wei, X.; Yang, Y.; Xu, S.; Deng, D.; Wang, Y.-Z. J. Energy Chem. 2022, 69, 369.
[12]
Hong, M.; Chen, E. Y. X. Green Chem. 2017, 19, 3692.
[13]
Lu, X. B.; Liu, Y.; Zhou, H. Chem. Eur. J. 2018, 24, 11255.
[14]
Tang, X.; Chen, E. Y.-X. Chem 2019, 5, 284.
[15]
Coates, G. W.; Getzler, Y. D. Y. L. Nat. Rev. Mater. 2020, 5, 501.
[16]
Xu, G.; Wang, Q. Green Chem. 2022, 24, 2321.
[17]
Olsén, P.; Odelius, K.; Albertsson, A.-C. Biomacromolecules 2016, 17, 699.
[18]
Diesendruck, C. E.; Peterson, G. I.; Kulik, H. J.; Kaitz, J. A.; Mar, B. D.; May, P. A.; White, S. R.; Martínez, T. J.; Boydston, A. J.; Moore, J. S. Nat. Chem. 2014, 6, 623.
[19]
Lutz, J. P.; Davydovich, O.; Hannigan, M. D.; Moore, J. S.; Zimmerman, P. M.; McNeil, A. J. J. Am. Chem. Soc. 2019, 141, 14544.
[20]
Shi, C.; Reilly, L. T.; Phani Kumar, V. S.; Coile, M. W.; Nicholson, S. R.; Broadbelt, L. J.; Beckham, G. T.; Chen, E. Y. X. Chem 2021, 7, 2896.
[21]
PET Polymer: Chemical Economics Handbook,IHS Markit, 2018. https://ihsmarkit.com/products/pet-polymer-chemicaleconomics-handbook.html (accessed May 14, 2022)
[22]
Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12, 539.
[23]
Moore, T.; Adhikari, R.; Gunatillake, P. Biomaterials 2005, 26, 3771.
[24]
Duda, A.; Kowalski, A. Handbook of Ring‐Opening Polymerization, Wiley online, 2009, pp. 1-51.
[25]
Houk, K. N.; Jabbari, A.; Hall, H. K.; Alemán, C. J. Org. Chem. 2008, 73, 2674.
[26]
Yamashita, K.; Yamamoto, K.; Kadokawa, J. I. Chem. Lett. 2014, 43, 213.
[27]
Hong, M.; Chen, E. Y.-X. Nat. Chem. 2016, 8, 42.
[28]
Liu, Y.; Wu, J.; Hu, X.; Zhu, N.; Guo, K. ACS Macro Lett. 2021, 10, 284.
[29]
Hong, M.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2016, 55, 4188.
[30]
Zhao, N.; Ren, C.; Li, H.; Li, Y.; Liu, S.; Li, Z. Angew. Chem. Int. Ed. 2017, 56, 12987.
[31]
Zhang, C.-J.; Hu, L.-F.; Wu, H.-L.; Cao, X.-H.; Zhang, X.-H. Macromolecules 2018, 51, 8705.
[32]
Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Macromolecules 2018, 51, 9317.
[33]
Shen, Y.; Zhao, Z.; Li, Y.; Liu, S.; Liu, F.; Li, Z. Polym. Chem. 2019, 10, 1231.
[34]
Walther, P.; Frey, W.; Naumann, S. Polym. Chem. 2018, 9, 3674.
[35]
Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. Angew. Chem. Int. Ed. 2009, 48, 9426.
[36]
Tang, X.; Hong, M.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J. Am. Chem. Soc. 2016, 138, 14326.
[37]
Shen, Y.; Xiong, W.; Li, Y.-Z.; Zhao, Z.-C.; Lu, H.; Li, Z.-B. CCS Chem. 2022, 3, 620.
[38]
Zhang, Z.-H.; Wang, X.; Weng, B.; Zhang, Y.; Zhang, G.; Hong, M. ACS Polym. Au 2022. https://doi:10.1021/acspolymersau.2c00001
[39]
Gilsdorf, R. A.; Nicki, M. A.; Chen, E. Y.-X. Polym. Chem. 2020, 11, 4942.
[40]
Wang, H. S.; Truong, N. P.; Pei, Z.; Coote, M. L.; Anastasaki, A. J. Am. Chem. Soc. 2022, 144, 4678.
[41]
Zhu, J.-B.; Watson, E. M.; Tang, J.; Chen, E. Y.-X. Science 2018, 360, 398.
[42]
Worch, J. C.; Prydderch, H.; Jimaja, S.; Bexis, P.; Becker, M. L.; Dove, A. P. Nat. Rev. Chem. 2019, 3, 514.
[43]
Zhu, J. B.; Chen, E. Y. X. Angew. Chem. Int. Ed. 2019, 58, 1178.
[44]
Zhu, J.-B.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2018, 57, 12558.
[45]
Cywar, R. M.; Zhu, J.-B.; Chen, E. Y.-X. Polym. Chem. 2019, 10, 3097.
[46]
Shi, C.; Li, Z.-C.; Caporaso, L.; Cavallo, L.; Falivene, L.; Chen, E. Y.-X. Chem 2021, 7, 670.
[47]
Shi, C.; Clarke, R. W.; McGraw, M. L.; Chen, E. Y.-X. J. Am. Chem. Soc. 2022, 144, 2264.
[48]
Cywar, R. M.; Rorrer, N. A.; Mayes, H. B.; Maurya, A. K.; Tassone, C. J.; Beckham, G. T.; Chen, E. Y.-X. J. Am. Chem. Soc. 2022, 144, 5366.
[49]
Schneiderman, D. K.; Hillmyer, M. A. Macromolecules 2016, 49, 2419.
[50]
Brutman, J. P.; De Hoe, G. X.; Schneiderman, D. K.; Le, T. N.; Hillmyer, M. A. Ind. Eng. Chem. Res. 2016, 55, 11097.
[51]
Schneiderman, D. K.; Vanderlaan, M. E.; Mannion, A. M.; Panthani, T. R.; Batiste, D. C.; Wang, J. Z.; Bates, F. S.; Macosko, C. W.; Hillmyer, M. A. ACS Macro Lett. 2016, 5, 515.
[52]
Fahnhorst, G. W.; Hoye, T. R. ACS Macro Lett. 2018, 7, 143.
[53]
Xu, T. Q.; Yu, Z. Q.; Zhang, X. M. Macromol. Chem. Phys. 2019, 220, 1.
[54]
Li, J.; Liu, F.; Liu, Y.; Shen, Y.; Li, Z. Angew. Chem. Int. Ed. 2022, e202207105.
[55]
Li, C.; Wang, L.; Yan, Q.; Liu, F.; Shen, Y.; Li, Z. Angew. Chem. Int. Ed. 2022, 61, e202201407.
[56]
Yan, Q.; Li, C.; Yan, T.; Shen, Y.; Li, Z. Macromolecules 2022, 55, 3860.
[57]
Chen, X.-S.; Chen, G.-Q.; Tao, Y.-H.; Wang, Y.-Z.; Lv, X.-B.; Zhang, L.-Q.; Zhu, J.; Zhang, J.; Wang, X.-H. Acta Polym. Sin. 2019, 50, 1068. (in Chinese)
[57]
(陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红, 高分子学报, 2019, 50, 1068.)
[58]
Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147.
[59]
Iovino, R.; Zullo, R.; Rao, M. A.; Cassar, L.; Gianfreda, L. Polym. Degrad. Stab. 2008, 93, 147.
[60]
Stanford, M. J.; Dove, A. P. Chem. Soc. Rev. 2010, 39, 486.
[61]
Thomas, C. M. Chem. Soc. Rev. 2010, 39, 165.
[62]
Alberti, C.; Enthaler, S. ChemistrySelect 2020, 5, 14759.
[63]
Cederholm, L.; Wohlert, J.; Olsén, P.; Hakkarainen, M.; Odelius, K. Angew. Chem. Int. Ed. 2022, e202204531.
[64]
Winnacker, M.; Rieger, B. Polym. Chem. 2016, 7, 7039.
[65]
Shi, C. X.; Guo, Y. T.; Wu, Y. H.; Li, Z. Y.; Wang, Y. Z.; Du, F. S.; Li, Z. C. Macromolecules 2019, 52, 4260.
[66]
Guo, Y.-T.; Shi, C.; Du, T.-Y.; Cheng, X.-Y.; Du, F.-S.; Li, Z.-C. Macromolecules 2022, 55, 4000.
[67]
Yang, K.-K.; Wang, X.-L.; Wang, Y.-Z. J. Macromol. Sci. Part C 2002, 42, 373.
[68]
Yang, K.-K., Wang, Y.-Z. Mater. China 2011, 8, 25. (in Chinese)
[68]
(杨科珂, 王玉忠, 中国材料进展, 2011, 8, 25.)
[69]
Nishida, H.; Yamashita, M.; Hattori, N.; Endo, T.; Tokiwa, Y. Polym. Degrad. Stab. 2000, 70, 485.
[70]
Li, X. Y.; Zhou, Q.; Wen, Z. Bin; Hui, Y.; Yang, K. K.; Wang, Y. Z. Polym. Degrad. Stab. 2015, 121, 253.
[71]
Wang, Y.-Z.; Zhou, Q.; Zheng, C.-Y.; Yang, K.-K.; Wang, X.-L.; Ding, S.-D.CNZL200510021203. X, 2007.
[71]
(王玉忠, 周茜, 郑长义, 杨科珂, 汪秀丽, 丁颂东,CNZL200510021203. X, 2007.)
[72]
Tian, G.-Q.; Yang, Z.-H.; Zhang, W.; Chen, S.-C.; Chen, L.; Wu, G.; Wang, Y.-Z. Green Chem. 2022, 24, 4490.
[73]
Bechtold, K.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 2001, 34, 8641.
[74]
Li, K.; Li, Z.; Duan, S.; Shen, Y.; Li, Z. J. Polym. Sci. 2021, 1, https://doi.org/10.1002/pol.20210841.
[75]
Labet, M.; Thielemans, W. Chem. Soc. Rev. 2009, 38, 3484.
[76]
Iwabuchi, S.; Jaacks, V.; Kern, W. Die Makromol. Chemie 1976, 177, 2675.
[77]
Sivalingam, G.; Madras, G. Polym. Degrad. Stab. 2003, 80, 11.
[78]
Abe, H.; Takahashi, N.; Kim, K. J.; Mochizuki, M.; Doi, Y. Biomacromolecules 2004, 5, 1480.
[79]
MacDonald, J. P.; Shaver, M. P. Polym. Chem. 2016, 7, 553.
[80]
Lizundia, E.; Makwana, V. A.; Larrañaga, A.; Vilas, J. L.; Shaver, M. P. Polym. Chem. 2017, 8, 3530.
[81]
Li, L.-G.; Wang, Q.-Y.; Zheng, Q.-Y.; Du, F.-S.; Li, Z.-C. Macromolecules 2021, 54, 6745.
[82]
Fan, H.-Z.; Yang, X.; Chen, J.-H.; Tu, Y.-M.; Cai, Z.; Zhu, J.-B. Angew. Chem. Int. Ed. 2022, 61, e202117639.
[83]
Tu, Y.-M.; Wang, X.-M.; Yang, X.; Fan, H.-Z.; Gong, F.-L.; Cai, Z.; Zhu, J.-B. J. Am. Chem. Soc. 2021, 143, 20591.
[84]
Handbook of Polycarbonate Science and Technology, Eds.: LeGrand, D. G.; Bendler, J. T., Marcel Dekker, New York, 2000.
[85]
Brunelle, D. J. ACS Symp. Ser. 2004, 898, 1.
[86]
Li, L.-G.; Du, F.-S.; Li, Z.-C. Polym. Bull. 2019, 02, 90. (in Chinese)
[86]
(李岭高, 杜福胜, 李子臣, 高分子通报, 2019, 02, 90.)
[87]
Calafat, A. M.; Weuve, J.; Ye, X.; Jia, L. T.; Hu, H.; Ringer, S.; Huttner, K.; Hauser, R. Environ. Health Perspect. 2009, 117, 639.
[88]
Biedermann, S.; Tschudin, P.; Grob, K. Anal. Bioanal. Chem. 2010, 398, 571.
[89]
Song, B.; Qin, A.; Tang, B.-Z. Acta Chim. Sinica 2020, 78, 9. (in Chinese)
[89]
(宋波, 秦安军, 唐本忠, 化学学报, 2020, 78, 9.)
[90]
Qin, Y. J. Funct. Polym. 2019, 32, 558. (in Chinese)
[90]
(秦玉升, 功能高分子学报, 2019, 32, 558.)
[91]
Zhang, M.; Jia, X.; Chen, X. China Synth. Resin Plast. 2021, 38, 60. (in Chinese)
[91]
(张梅, 贾学增, 陈曦, 合成树脂及塑料, 2021, 38, 60.)
[92]
Lu, X.-Y.; Ma, B.-Z.; Luo, H.; Qi, H.; Li, Q.; Wu, G.-P. Chin. J. Appl. Chem. 2021, 38, 1189. (in Chinese)
[92]
(陆新宇, 马彬泽, 罗皓, 齐欢, 李强, 伍广朋, 应用化学, 2021, 38, 1189.)
[93]
Darensbourg, D. J. Chem. Rev. 2007, 107, 2388.
[94]
Lu, X.-B.; Ren, W.-M.; Wu, G.-P. Acc. Chem. Res. 2012, 45, 1721.
[95]
Childers, M. I.; Longo, J. M.; Van Zee, N. J.; LaPointe, A. M.; Coates, G. W. Chem. Rev. 2014, 114, 8129.
[96]
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466.
[97]
Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A. Dalton. Trans. 2010, 39, 8363.
[98]
Kim, J. G. Polym. Chem. 2020, 11, 4830.
[99]
Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Part B Polym. Lett. 1969, 7, 287.
[100]
Scharfenberg, M.; Hilf, J.; Frey, H. Adv. Funct. Mater. 2018, 28, 1704302.
[101]
Liu, Y.; Lu, X.-B. J. Polym. Sci. 2022, 1. https://doi.org/10.1002/pol.20220118.
[102]
Darensbourg, D. J.; Yeung, A. D. Polym. Chem. 2014, 5, 3949.
[103]
Darensbourg, D. J. Polym. Degrad. Stab. 2018, 149, 45.
[104]
Liu, Y.; Ren, W.-M.; Liu, J.; Lu, X.-B. Angew. Chem. Int. Ed. 2013, 52, 11594.
[105]
Lu, X. B.; Wang, Y. Angew. Chem. Int. Ed. 2004, 43, 3574.
[106]
Darensbourg, D. J.; Wei, S.-H. Macromolecules 2012, 45, 5916.
[107]
Darensbourg, D. J.; Yeung, A. D. Macromolecules 2013, 46, 83.
[108]
Darensbourg, D. J.; Wei, S. H.; Yeung, A. D.; Ellis, W. C. Macromolecules 2013, 46, 5850.
[109]
Darensbourg, D. J.; Yeung, A. D.; Wei, S.-H. Green Chem. 2013, 15, 1578.
[110]
Liu, Y.; Fang, L. M.; Ren, B. H.; Lu, X. B. Macromolecules 2020, 53, 2912.
[111]
Singer, F. N.; Deacy, A. C.; McGuire, T. M.; Williams, C. K.; Buchard, A. Angew. Chem. Int. Ed. 2022, 61, e202201785.
[112]
Liao, X.; Cui, F.; He, J.; Ren, W.-M.; Lu, X.-B.; Zhang, Y. Chem. Sci. 2022, 13, 6283.
[113]
Yu, Y.; Gao, B.; Liu, Y.; Lu, X.-B. Angew. Chem. Int. Ed. 2022, 61, e202204492.
[114]
Li, C.; Sablong, R. J.; van Benthem, R. A. T. M.; Koning, C. E. ACS Macro Lett. 2017, 6, 684.
[115]
Liu, Y.; Zhou, H.; Guo, J. Z.; Ren, W. M.; Lu, X. B. Angew. Chem. Int. Ed. 2017, 56, 4862.
[116]
Yu, Y.; Fang, L.-M.; Liu, Y.; Lu, X.-B. ACS Catal. 2021, 11, 8349.
[117]
Tezuka, K.; Komatsu, K.; Haba, O. Polym. J. 2013, 45, 1183.
[118]
Haba, O.; Itabashi, H. Polym. J. 2014, 46, 89.
[119]
Guerin, W.; Diallo, A. K.; Kirilov, E.; Helou, M.; Slawinski, M.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume, S. M. Macromolecules 2014, 47, 4230.
[120]
Diallo, A. K.; Kirillov, E.; Slawinski, M.; Brusson, J.-M.; Guillaume, S. M.; Carpentier, J.-F. Polym. Chem. 2015, 6, 1961.
[121]
Ansari, I.; Singh, P.; Mittal, A.; Mahato, R. I.; Chitkara, D. Biomaterials 2021, 275, 120953.
[122]
Saxon, D. J.; Gormong, E. A.; Shah, V. M.; Reineke, T. M. ACS Macro Lett. 2021, 10, 98.
[123]
Olsén, P.; Undin, J.; Odelius, K.; Keul, H.; Albertsson, A.-C. Biomacromolecules 2016, 17, 3995.
[124]
Zhang, W.; Dai, J.; Wu, Y.-C.; Chen, J.-X.; Shan, S.-Y.; Cai, Z.; Zhu, J.-B. ACS Macro Lett. 2022, 11, 173.
[125]
Huang, J.; Olsén, P.; Svensson Grape, E.; Inge, A. K.; Odelius, K. Macromolecules 2022, 55, 608.
[126]
Jehanno, C.; Pérez-Madrigal, M. M.; Demarteau, J.; Sardon, H.; Dove, A. P. Polym. Chem. 2019, 10, 172.
[127]
Alberti, C.; Enthaler, S. Waste and Biomass Valorization 2020, 11, 4621.
[128]
Nguyen, B.; Claveau-Mallet, D.; Hernandez, L. M.; Xu, E. G.; Farner, J. M.; Tufenkji, N. Acc. Chem. Res. 2019, 52, 858.
[129]
Jehanno, C.; Demarteau, J.; Mantione, D.; Arno, M. C.; Ruipérez, F.; Hedrick, J. L.; Dove, A. P.; Sardon, H. Angew. Chem. Int. Ed. 2021, 60, 6710.
[130]
Stefan, W.; Jasmine, I.; Jürgen, K. Sci. Adv. 2022, 4, eaat9669.
[131]
Hatakeyama, K.; Kojima, T.; Funazukuri, T. J. Mater. Cycles Waste Manag. 2014, 16, 124.
[132]
Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Nature 2021, 590, 423.
[133]
Jiang, J.; Shi, K.; Zhang, X.; Yu, K.; Zhang, H.; He, J.; Ju, Y.; Liu, J. J. Environ. Chem. Eng. 2022, 10, 106867.
[134]
Lim, J.; Pyun, J.; Char, K. Angew. Chem. Int. Ed. 2015, 54, 3249.
[135]
Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M. Chem. Commun. 2016, 52, 5383.
[136]
Cao, W.; Dai, F.; Hu, R.; Tang, B. Z. J. Am. Chem. Soc. 2020, 142, 978.
[137]
Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, Á.; Theato, P.; Mackay, M. E.; Sung, Y.-E.; Char, K.; Pyun, J. Nat. Chem. 2013, 5, 518.
[138]
Zhang, C.-J.; Zhu, T.-C.; Cao, X.-H.; Hong, X.; Zhang, X.-H. J. Am. Chem. Soc. 2019, 141, 5490.
[139]
Luo, M.; Zhang, X.-H.; Darensbourg, D. J. Acc. Chem. Res. 2016, 49, 2209.
[140]
Kausar, A.; Zulfiqar, S.; Sarwar, M. I. Polym. Rev. 2014, 54, 185.
[141]
Liu, Y.; Jia, Y.; Wu, Q.; Moore, J. S. J. Am. Chem. Soc. 2019, 141, 17075.
[142]
Yu, Y.; Yiling, N.; Kou, O.; Takuzo, A. Science 2018, 359, 72.
[143]
Black, S. P.; Sanders, J. K. M.; Stefankiewicz, A. R. Chem. Soc. Rev. 2014, 43, 1861.
[144]
Herrmann, A. Chem. Soc. Rev. 2014, 43, 1899.
[145]
Tang, X.; Westlie, A. H.; Watson, E. M.; Chen, E. Y.-X. Science 2019, 366, 754.
[146]
Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Nat. Chem. 2016, 8, 1047.
[147]
Zhu, Y.; Romain, C.; Williams, C. K. Nature 2016, 540, 354.
[148]
Hillmyer, M. A.; Tolman, W. B. Acc. Chem. Res. 2014, 47, 2390.
[149]
Suzuki, M.; Makimura, K.; Matsuoka, S. Biomacromolecules 2016, 17, 1135.
[150]
Yuan, J.; Xiong, W.; Zhou, X.; Zhang, Y.; Shi, D.; Li, Z.; Lu, H. J. Am. Chem. Soc. 2019, 141, 4928.
[151]
Shi, C.; McGraw, M. L.; Li, Z. C.; Cavallo, L.; Falivene, L.; Chen, E. Y. X. Sci. Adv. 2020, 6, 1.
[152]
Xiong, W.; Chang, W.; Shi, D.; Yang, L.; Tian, Z.; Wang, H.; Zhang, Z.; Zhou, X.; Chen, E.-Q.; Lu, H. Chem 2020, 6, 1831.
[153]
Shen, Y.; Li, D.; Kou, X.; Wang, R.; Liu, F.; Li, Z. Polym. Chem. 2022, 13, 1861.
[154]
Jiang, Z.; Zhao, J.; Zhang, G. ACS Macro Lett. 2019, 8, 759.
[155]
Orhan, B.; Tschan, M. J.-L.; Wirotius, A.-L.; Dove, A. P.; Coulembier, O.; Taton, D. ACS Macro Lett. 2018, 7, 1413.
[156]
Wang, Y.; Li, M.; Chen, J.; Tao, Y.; Wang, X. Angew. Chem. Int. Ed. 2021, 60, 22547.
[157]
Yuan, P.; Sun, Y.; Xu, X.; Luo, Y.; Hong, M. Nat. Chem. 2022, 14, 294.
[158]
Yue, T.-J.; Zhang, M.-C.; Gu, G.-G.; Wang, L.-Y.; Ren, W.-M.; Lu, X.-B. Angew. Chem. Int. Ed. 2019, 58, 618.
[159]
Wang, Y.; Li, M.; Wang, S.; Tao, Y.; Wang, X. Angew. Chem. Int. Ed. 2021, 60, 10798.
[160]
Bardwell, J. C. A.; Beckwith, J. Cell 1993, 74, 769.
[161]
Wedemeyer, W. J.; Welker, E.; Narayan, M.; Scheraga, H. A. Biochemistry 2000, 39, 4207.
[162]
Zhang, Q.; Shi, C. Y.; Qu, D.-H.; Long, Y. T.; Feringa, B. L.; Tian, H. Sci. Adv. 2018, 4, eaat8192.
[163]
Zhang, Q.; Qu, D.-H.; Feringa, B. L.; Tian, H. J. Am. Chem. Soc. 2022, 144, 2022.
[164]
Deng, Y.; Zhang, Q.; Feringa, B. L.; Tian, H.; Qu, D.-H. Angew. Chem. Int. Ed. 2020, 59, 5278.
[165]
Zhang, Q.; Deng, Y.-X.; Luo, H.-X.; Shi, C.-Y.; Geise, G. M.; Feringa, B. L.; Tian, H.; Qu, D.-H. J. Am. Chem. Soc. 2019, 141, 12804.
[166]
Zhang, Q.; Deng, Y.; Shi, C.-Y.; Feringa, B. L.; Tian, H.; Qu, D.-H. Matter 2021, 4, 1352.
[167]
Pal, S.; Sommerfeldt, A.; Davidsen, M. B.; Hinge, M.; Pedersen, S. U.; Daasbjerg, K. Macromolecules 2020, 53, 4685.
[168]
Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007, 32, 1.
[169]
Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Chem. Soc. Rev. 2018, 47, 4510.
[170]
Hejl, A.; Scherman, O. A.; Grubbs, R. H. Macromolecules 2005, 38, 7214.
[171]
Liu, H.; Nelson, A. Z.; Ren, Y.; Yang, K.; Ewoldt, R. H.; Moore, J. S. ACS Macro Lett. 2018, 7, 933.
[172]
Neary, W. J.; Isais, T. A.; Kennemur, J. G. J. Am. Chem. Soc. 2019, 141, 14220.
[173]
Feist, J. D.; Xia, Y. J. Am. Chem. Soc. 2020, 142, 1186.
[174]
Feist, J. D.; Lee, D. C.; Xia, Y. Nat. Chem. 2022, 14, 53.
[175]
Martinez, H.; Ren, N.; Matta, M. E.; Hillmyer, M. A. Polym. Chem. 2014, 5, 3507.
[176]
Sathe, D.; Zhou, J.; Chen, H.; Su, H.-W.; Xie, W.; Hsu, T.-G.; Schrage, B. R.; Smith, T.; Ziegler, C. J.; Wang, J. Nat. Chem. 2021, 13, 743.
[177]
Chen, H.; Shi, Z.; Hsu, T.-G.; Wang, J. Angew. Chem. Int. Ed. 2021, 60, 25493.
[178]
Zhou, J.; Sathe, D.; Wang, J. J. Am. Chem. Soc. 2022, 144, 928.
[179]
Sathe, D.; Zhou, J.; Chen, H.; Schrage, B. R.; Yoon, S.; Wang, Z.; Ziegler, C. J.; Wang, J. Polym. Chem. 2022, 13, 2608.
文章导航

/