调控有机小分子晶体力致发光行为的方法
收稿日期: 2022-05-25
网络出版日期: 2022-07-28
基金资助
浙江省自然科学基金(LY19B020015)
Methods for Adjusting Mechanoluminescence Behaviors on Crystals of Purely Organic Small Molecules
Received date: 2022-05-25
Online published: 2022-07-28
Supported by
Natural Science Fund of Zhejiang Province(LY19B020015)
尽管力致发光(mechanoluminescence, ML)现象的发现至今已有超过400年的历史, 但直到最近几十年才再次走入人们关注的视野. 这种与分子堆积关系密切的固体光学现象已经在光电材料领域内得到了一些应用, 并蕴藏着巨大的开发前景. 近年来, 随着有机功能化合物的蓬勃发展, 对力致发光材料的探索已逐渐从无机与高分子化合物、有机金属配合物、陶瓷等方面转到纯有机小分子晶体. 此外, 随着人们对有机小分子力致发光活性晶体认识的不断深入, 该领域的研究兴趣也从最初的如何获得此类晶体变为如何调控晶体的力致发光行为从而使其呈现出ML性能的差异. 本综述将对一些调控有机小分子晶体力致发光性能的手段, 例如物理方法、手性活化、分子结构改造、主客体掺杂、同质多晶形成等进行总结, 同时也将分子堆积与分子间相互作用对晶体发光性能的影响进行探讨, 并在此基础上对有机小分子力致发光晶体研究领域的未来发展提出建设性的展望.
贾彦荣 , 高贯雷 , 夏敏 . 调控有机小分子晶体力致发光行为的方法[J]. 化学学报, 2022 , 80(9) : 1309 -1321 . DOI: 10.6023/A22050240
Although mechanoluminescence (ML) phenomenon has been discovered for more than 400 years, it has not gone into the research focus once again until recent decades. This type of solid-state optical effect which is heavily dependent on molecular packing has been applied in some optoelectrical materials and possesses large potentials in the future high-tech fields. Currently, as the researches on organic functional materials flourish, more and more attentions have been transferred from ML-active inorganic, polymeric, organometallic compounds and ceramics onto ML-active crystals of purely organic small molecules. Due to the gradually deepened understanding for ML-active crystals of purely organic small molecules, the research interests have shifted from how to obtain ML-active compounds onto how to design and develop molecules so that ML-active purely organic crystals with differentiated ML behaviors can be produced. In this review, some methods for generating distinct ML performances, including physical adjustment, chirality activation, structural modification, polymorph formation, host-guest doping and so on are summarized. Meanwhile, how molecular packing and intermolecular interactions make impacts on ML effect in individual systems are also discussed herein and some constructive outlook about the future progress in aspect of ML study is accordingly proposed.
| [1] | Ciniero A.; Rouzic J. L.; Baikie I.; Reddyhoff T. Wear 2017, 374, 113. |
| [2] | Xu C.-N.; Watanabe T.; Akiyama M.; Zheng X.-G. Appl. Phys. Lett. 1999, 74, 2414. |
| [3] | Sage I.; Badcock R.; Humberstone L.; Geddes N.; Kemp M.; Bourhill G. Smart Mater. Struct. 1999, 8, 504. |
| [4] | Zhuang Y.; Xie R.-J. Adv. Mater. 2021, 33, 2005925. |
| [5] | Sage I.; Badcock R.; Humberstone L.; Geddes N.; Kemp M.; Bourhill G. Smart Mater. Struct. 1999, 8, 504. |
| [6] | Terasaki N.; Zhang H.; Yamada H.; Xu C.-N. Chem. Commun. 2011, 47, 8034. |
| [7] | Terasaki N.; Yamada H.; Xu C.-N. Catal. Today 2013, 201, 203. |
| [8] | Xu H.; Wang F.; Wang Z.; Zhou H.; Zhang G.; Zhang J.; Wang J.; Yang S. Tribol. Lett. 2019, 67, 1. |
| [9] | Wang X.; Zhang H.; Yu R.; Dong L.; Peng D.; Zhang A.; Zhang Y.; Liu H.; Pan C.; Wang Z. L. Adv. Mater. 2015, 27, 2324. |
| [10] | Wang M.; Wu H.; Dong W.; Lian J.; Wang W.; Zhou J.; Zhang J. Inorg. Chem. 2022, 61, 2911. |
| [11] | Wang X.; Zhang H.; Yu R.; Dong L.; Peng D.; Zhang A.; Zhang Y.; Liu H.; Pan C.; Wang Z. L. Adv. Mater. 2015, 27, 2324. |
| [12] | Jeong S. M.; Song S.; Joo K. I.; Kim J.; Hwang W.; Jeong J.; Kim H. Energy Environ. Sci. 2014, 7, 3338. |
| [13] | Terasaki N.; Xu C.-N.; Imai Y.; Yamada H. Jpn. J. Appl. Phys. 2007, 46, 2385. |
| [14] | Patel D. K.; Cohen B.; Etgar L.; Magdassi S. Mater. Horiz. 2018, 5, 708. |
| [15] | Xu C.-N.; Watanabe T.; Akiyama M.; Zheng X. G. Appl. Phys. Lett. 1999, 74, 1236. |
| [16] | Zhang X.; Li Z.; Du W.; Zhao Y.; Wang W.; Pang L; Chen L.; Yu A.; Zhai J. Nano Energy 2022, 96, 107115. |
| [17] | Zink J. I. Acc. Chem. Res. 1978, 11, 289. |
| [18] | Zink J. I.; Hardy G. E.; Sutton J. E. J. Phys. Chem. 1976, 80, 248. |
| [19] | Chandra B. P.; Chandra V. K.; Jha P.; Patel R.; Shende S. K.; Thaker S.; Baghel R. N. J. Lumin. 2012, 132, 2012. |
| [20] | Qian X.; Cai Z.; Su M.; Li F.; Fang W.; Li Y.; Zhou X.; Li Q.; Feng X.; Li W.; Hu X.; Wang X.; Pan C.; Song Y. Adv. Mater. 2018, 30, 1800291. |
| [21] | Feng A.; Smet P. F. Materials 2018, 11, 484. |
| [22] | Zhang H.; Wei Y.; Huang X.; Huang W. J. Lumin. 2019, 207, 137. |
| [23] | Szukalski A.; Kabanski A.; Goszyk J.; Adaszynski M.; Kaczmarska M.; Gaida R.; Wyskiel M.; Mysliwiec J. Materials 2021, 14, 7142. |
| [24] | Liu M.; Wu Q.; Shi H.; An Z.; Huang W. Acta Chim. Sinica 2018, 76, 246.(in Chinese) |
| [24] | (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.) |
| [25] | Bünzli J.-C. G.; Wong K.-L. J. Rare Earths 2018, 36, 1. |
| [26] | Qin Y.; She P.; Huang X.; Huang W.; Zhao Q. Coordin. Chem. Rev. 2020, 416, 213331. |
| [27] | Qasem A.; Xiong P.; Ma Z.; Peng M.; Yang Z. Laser & Photon. Rev. 2021, 15, 2100276. |
| [28] | Xie Y.; Li Z. Mater. Chem. Front. 2020, 4, 317. |
| [29] | Mukherjee S.; Thilagar P. Angew. Chem. Int. Ed. 2019, 58, 7922. |
| [30] | Li A.-S.; Wang J.-F.; Li Z. Chinese J. Lumin. 2021, 42, 283. |
| [31] | Di B.-H.; Chen Y.-L. Chin. Chem. Lett. 2018, 29, 245. |
| [32] | Fang M.; Yang J.; Li Z. Progress Mater. Sci. 2022, 125, 100914. |
| [33] | Wang J.; Li Z. Acta Chim. Sinica 2021, 79, 575.(in Chinese) |
| [33] | (王金凤, 李振, 化学学报, 2021, 79, 575.) |
| [34] | Chang K.; Li Q. Q.; Li Z. Chin. J. Org. Chem. 2020, 40, 3656.(in Chinese) |
| [34] | (常凯, 李倩倩, 李振, 有机化学, 2020, 40, 3656.) |
| [35] | Li Q. Q.; Li Z. Acc. Chem. Res. 2020, 53, 962. |
| [36] | Huang Q.; Mei X.; Xie Z.; Wu D.; Yang S.; Gong W.; Chi Z.; Lin Z.; Ling Q. J. Mater. Chem. C 2019, 7, 2530. |
| [37] | Jiang Y.; Chang X.; Xie W.; Huang G.; Li B. L. Mater. Chem. Front. 2021, 5, 885. |
| [38] | Li W.; Huang Q.; Mao Z.; Li Q.; Jiang L.; Xie Z.; Xu R.; Yang Y.; Zhao J.; Yu T.; Zhang Y.; Aldred M. P.; Chi Z. Angew. Chem. Int. Ed. 2018, 57, 12727. |
| [39] | Sun Q.; Zhang K.; Zhang Z.; Tang L.; Xie Z.; Chi Z.; Xue S.; Zhang H.; Yang W. Chem. Commun. 2018, 54, 8206. |
| [40] | Zhang H.; Ma H.; Huang W.; Gong W.; He Z.; Huang G.; Li B. S.; Tang B. Z. Mater. Horiz. 2021, 8, 2816. |
| [41] | Wang C.; Xu B.; Li M.; Chi Z.; Xie Y.; Li Q.; Li Z. Mater. Horiz. 2016, 3, 220. |
| [42] | Wang C.; Yu Y.; Chai Z.; He F.; Wu C.; Gong Y.; Han M.; Li Q.; Li Z. Mater. Chem. Front. 2019, 3, 32. |
| [43] | Yu Y.; Fan Y.; Wang C.; Wei Y.; Liao Q.; Li Q.; Li Z. J. Mater. Chem. C 2019, 7, 13759. |
| [44] | Wang J.; Chai Z.; Wang J.; Wang C.; Han M.; Liao Q.; Huang A.; Lin P.; Li C.; Li Q.; Li Z. Angew. Chem. Int. Ed. 2019, 58, 17297. |
| [45] | Xu B.; He J.; Mu Y.; Zhu Q.; Wu S.; Wang Y.; Zhang Y.; Jin C.; Lo C.; Chi Z.; Lien A.; Liu S.; Xu J. Chem. Sci. 2015, 6, 3236. |
| [46] | Jiang Y.; Wang J.; Huang G.; Li Z.; Li B.; Tang B. Z. J. Mater. Chem. C 2019, 7, 11790. |
| [47] | Xie Z.; Yu T.; Chen J.; Ubba E.; Wang L.; Mao Z.; Su T.; Zhang Y.; Aldred M. P.; Chi Z. Chem. Sci. 2018, 9, 5787. |
| [48] | Liu X.; Jia Y.; Jiang H.; Gao G.; Xia M. Acta Chim. Sinica 2019, 77, 1194.(in Chinese) |
| [48] | (刘笑静, 贾彦荣, 江豪, 高贯雷, 夏敏, 化学学报, 2019, 77, 1194.) |
| [49] | Chen Y.; Xu C.; Xu B.; Mao Z.; Li J.-A.; Yang Z.; Peethani N. R.; Liu C.; Shi G.; Gu F. L.; Zhang Y.; Chi Z. Mater. Chem. Front. 2019, 3, 1800. |
| [50] | Nakayama H.; Nishida J.; Takada N.; Sato H.; Yamashita Y. Chem. Mater. 2012, 24, 671. |
| [51] | Nishida J.; Ohura H.; Kita H.; Hasegawa H.; Kawase T.; Takada N.; Sato H.; Sei Y.; Yamashita Y. J. Org. Chem. 2016, 81, 433. |
| [52] | Tu J.; Fan Y.; Wang J.; Li X.; Liu F.; Han M.; Wang C.; Li Q.; Li Z. J. Mater. Chem. C 2019, 7, 12256. |
| [53] | Wang C.; Yu Y.; Yuan Y.; Ren C.; Liao Q.; Wang J.; Chai Z.; Li Q.; Li Z. Matter 2020, 2, 181. |
| [54] | Li J.-A.; Zhou J.; Mao Z.; Xie Z.; Yang Z.; Xu B.; Liu C.; Chen X.; Ren D.; Pan H.; Shi G.; Zhang Y.; Chi Z. Angew. Chem. Int. Ed. 2018, 57, 6449. |
| [55] | Yue L.; Wang Y.; Ma J.; Yuan S.; Xue Y.; Sun Q.; Yang W. Mater. Chem. Front. 2021, 5, 5497. |
| [56] | Wu W.; Narisawa T.; Hayashi S. Jpn. J. Appl. Phys. 2001, 40, 1294. |
| [57] | Miao J.; Zhang Z.; Cui Z.; Zhang M. Mater. Adv. 2022, 3, 2692. |
| [58] | Huang G.; Chang X.; Jiang Y.; Lin B.; Li B. S.; Tang B. Z. Mater. Chem. Front. 2020, 4, 1720. |
| [59] | Jiang H.; Liu X.-J.; Jia R.-R.; Xu T.-H.; Xia M. RSC Adv. 2019, 9, 30381. |
| [60] | Tu L.; Che W.; Li S.; Li X.; Xie Y.; Li Z. J. Mater. Chem. C 2021, 9, 12124. |
| [61] | Yu Y.; Fan F.; Wang C.; Wei Y.; Liao Q.; Li Q.; Li Z. Mater. Chem. Front. 2021, 5, 817. |
| [62] | Jia Y.-R.; Jiang H.; Gao G.-L.; Xu K.; Xia M. Dyes Pigm. 2021, 194, 10951. |
| [63] | Liu P.; Chen J.; Xu C.; Hao H.; Xu B.; Hu D.; Shi G.; Chi Z. Dyes Pigm. 2020, 174, 108093. |
| [64] | Fang M.; Yang J.; Liao Q.; Gong Y.; Xie Z.; Chi Z.; Peng Q.; Li Q.; Li Z. J. Mater. Chem. C 2017, 5, 9879. |
| [65] | Yu Y.; Wang C.; Wei Y.; Fan Y.; Yang J.; Wang J.; Han M.; Li Q.; Li Z. Adv. Optical Mater. 2019, 7, 1900505. |
| [66] | Liu F.; Tu J.; Wang X.; Wang J.; Gong Y.; Han M.; Dang X.; Liao Q.; Peng Q.; Li Q.; Li Z. Chem. Commun. 2018, 54, 5598. |
| [67] | Liu X.-J.; Jiang H.; Jia Y.-R.; Xia M. Dyes Pigm. 2020, 172, 107845. |
| [68] | Tu J.; Liu F.; Wang J.; Li X.; Gong Y.; Fan Y.; Han M.; Li Q.; Li Z. ChemPhotoChem 2019, 3, 133. |
| [69] | Arivazhagan C.; Maity A.; Bakthavachalam K.; Jana A.; Panigrahi S. K.; Suresh E.; Das A.; Ghosh S. Chem. Eur. J. 2017, 23, 7046. |
| [70] | Ruan Z.; Dang Q.; Chen X.; Deng C.; Gao Z.; Lin J.; Liu S.; Chen Y.; Tian Z.; Li Z. Adv. Optical Mater. 2021, 9, 2001549. |
| [71] | Liu F.; Tu Z.; Fan Y.; Li Q.; Li Z. ACS Omega 2019, 4, 18609. |
| [72] | Xu T.; Liu T.; Mu Y.; Wang Y.-F.; Chi Z.; Lo C.-C.; Liu S. Zhang Y.; Lien A.; Xu J. Angew. Chem. Int. Ed. 2015, 54, 874. |
| [73] | Mukherjee S.; Thilagar P. Chem. Commun. 2016, 52, 1070. |
| [74] | Neea K. K.; Sudhakar P.; Dipak K.; Thilagar P. Chem. Commun. 2017, 53, 3641. |
| [75] | Xu T.; Li W.; He J.; Wu S.; Zhu Q.; Yang Z.; Wu Y.-C.; Zhang Y.; Jin C.; Lu P.-Y.; Chi Z.; Liu S.; Xu J.; Bryced M. R. Chem. Sci. 2016, 7, 5307. |
| [76] | Li D.; Yang J.; Wang Y.; Li X.; Zhu D.; Fang M.; Li Z. J. Mater. Chem. C 2020, 8, 10852. |
| [77] | Dang Q.; Hu L.; Wang J.; Zhang Q.; Han M.; Luo S.; Gong Y.; Wang C.; Li Q.; Li Z. Chem. Eur. J. 2019, 25, 7031. |
| [78] | Gong Y.-B.; Zhang P.; Gu Y.; Wang J. Q.; Han M.-M.; Chen C.; Zhan X.-J.; Xie Z.-L.; Zou B.; Peng Q.; Chi Z.-G.; Li Z. Adv. Optical Mater. 2018, 6, 1800198. |
| [79] | Sun Q.; Tang L.; Zhang Z.; Zhang K.; Xie Z.; Chi Z.; Zhang H.; Yang W. Chem. Commun. 2018, 54, 94. |
| [80] | Yang J.; Ren Z.; Xie Z.; Liu Y.; Wang C.; Xie Y.; Peng Q.; Xu B.; Tian W.; Zhang F.; Chi Z.; Li Q.; Li Z. Angew. Chem. Int. Ed. 2017, 56, 880. |
| [81] | Zhan L.; Chen Z.; Gong S.; Xiang Y.; Ni F.; Zeng X.; Xie G.; Yang C. Angew. Chem. Int. Ed. 2019, 58, 17651. |
| [82] | Gao G.-L.; Jia Y.-R.; Jiang H.; Xia M. Dyes Pigm. 2021, 186, 109030. |
| [83] | Liu X.-J.; Gao G.-L.; Jiang H.; Jia Y.-R.; Xia M. RSC Adv. 2020, 10, 23187. |
| [84] | Wang W.; Wang Z.; Zhang J.; Zhou J.; Dong W.; Wang Y. Nano Energy 2022, 94, 106920. |
| [85] | Deng H.; Yang Z.; Li G.; Ma D.; Xie Z.; Li W.; Mao Z.; Zhao J.; Yang Z.; Zhang Y.; Chi Z. Chem. Eng. J. 2022, 438, 135519. |
/
| 〈 |
|
〉 |