研究通讯

巨型给-受体分子开关化合物的合成及性质研究

  • 眭玉光 ,
  • 周锦荣 ,
  • 廖攀 ,
  • 梁文杰 ,
  • 徐海
展开
  • 中南大学化学化工学院 长沙 410083

收稿日期: 2022-06-29

  网络出版日期: 2022-08-05

基金资助

国家自然科学基金(21975288); 国家重点研发计划子课题(2018YFC1800401)

A Gaint Donor-Acceptor Molecular Switch Compound: Synthesis and Properties

  • Yuguang Sui ,
  • Jinrong Zhou ,
  • Pan Liao ,
  • Wenjie Liang ,
  • Hai Xu
Expand
  • College of Chemistry and Chemical Engineering, Central South University, Changsha 410083

Received date: 2022-06-29

  Online published: 2022-08-05

Supported by

National Natural Science Foundation of China(21975288); National Key Research and Development Plan of China(2018YFC1800401)

摘要

以构象可变的间苯二酚杯[4]芳烃孔穴化合物(Cavitand)为分子开关母体, 合成了一种新颖的给-受体(D-A)型分子开关化合物(化合物1), 该分子是目前已知分子量最大的D-A型间苯二酚杯[4]芳烃Cavitand (分子量为3064.9966). 其中, 以卟啉为给体, 富勒烯为受体. 在pH诱导下, 化合物1可发生构象变化, 即由原来的关闭状(vase)转为打开状(kite); 而在降低温度和引入Zn2+的条件下, 不能促使化合物1发生构象变化. pH诱导构象发生变化的原因, 是酸的加入会导致喹喔啉手臂上的N原子发生质子化, 从而使得形成的静电排斥作用促使手臂之间相互远离. 此外, 对化合物1的光物理性质研究表明, 存在卟啉向富勒烯的单线态能量转移, 其单线态能量转移速率常数为1.1×107 s-1, 单线态能量转移效率为9.63%.

本文引用格式

眭玉光 , 周锦荣 , 廖攀 , 梁文杰 , 徐海 . 巨型给-受体分子开关化合物的合成及性质研究[J]. 化学学报, 2022 , 80(8) : 1061 -1065 . DOI: 10.6023/A22060283

Abstract

A novel donor-acceptor (D-A) molecular switch compound (compound 1) in which porphyrin is the donor and fullerene is the acceptor was synthesized using a conformationally variable resorcin[4]arene cavitand as the molecular switch parent. As far as we know, this molecule is the largest D-A resorcin[4]arene cavitand (molecular weight: 3064.9966). In order to synthesize this D-A molecular switch, firstly, compounds 4 and 9 were synthesized by Sonogashira coupling and Suzuki coupling, respectively. Then, both compounds 4 and 9 react with compound 5 to obtain arm compounds 6 and 10. Considering the low yield in the process of synthesizing porphyrins, compound 6 was first reacted with resorcin[4]arene 11 to obtain compound 12. Undoubtedly, a by-product with two compound 6 arms simultaneously will be produced. So, compound 12 can be obtained in a higher yield by adding compound 6 in batches. Then compound 13 can be obtained by the Prato reaction, and finally, compound 1 can be obtained by reacting with porphyrin arm 10. The structure of 1 was thoroughly confirmed by 1H NMR spectroscopy (nuclear magnetic resonance spectroscopy), 13C NMR spectroscopy, 2D (two-dimensional) NMR spectroscopy and HRMS (high-resolution mass spectrometry). Under pH induction, compound 1 can undergo a conformational change from the original contracted state (vase) to the expanded state (kite). However, the conformational change of 1 cannot be induced under the conditions of lowering the temperature and introducing Zn2+. The reason for the pH-induced conformational change may be that the addition of acid causes the protonation of the N atom on the quinoxaline arm, which makes the formed electrostatic repulsion push the arms away from each other. In addition, the photophysical properties of 1 were also studied. The photophysical processes were investigated with steady-state UV-visible absorption and transient fluorescence spectroscopies. Compound 1 shows efficient intramolecular singlet-singlet energy transfer from the porphyrin moiety to the fullerene moiety. The rate constants and efficiency of the singlet-singlet energy transfer are calculated at 1.1×107 s-1 and 9.63%, respectively.

参考文献

[1]
Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
[2]
Badgurjar, D.; Seetharaman, S.; D’Souza, F.; Chitta, R. Chem. Eur. J. 2021, 27, 2184.
[3]
Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
[4]
Guldi, D. M. Chem. Commun. 2000, 321.
[5]
Yu, X.; Wang, B.; Kim, Y.; Park, J.; Ghosh, S.; Dhara, B.; Mukhopadhyay, R. D.; Koo, J.; Kim, I.; Kim, S.; Hwang, I. C.; Seki, S.; Guldi, D. M.; Baik, M. H.; Kim, K. J. Am. Chem. Soc. 2020, 142, 12596.
[6]
Zarrabi, N.; Poddutoori, P. K. Coord. Chem. Rev. 2021, 429, 213561.
[7]
Hölzel, H.; Haines, P.; Kaur, R.; Lungerich, D.; Jux, N.; Guldi, D. M. J. Am. Chem. Soc. 2022, 144, 8977.
[8]
Zarrabi, N.; Agatemor, C.; Lim, G. N.; Matula, A. J.; Bayard, B. J.; Batista, V. S.; D’Souza, F.; Poddutoori, P. K. J. Phys. Chem. C 2019, 123, 131.
[9]
Zarrabi, N.; Seetharaman, S.; Chaudhuri, S.; Holzer, N.; Batista, V. S.; van der Est, A.; D’Souza, F.; Poddutoori, P. K. J. Am. Chem. Soc. 2020, 142, 10008.
[10]
Nikolaou, V.; Charisiadis, A.; Stangel, C.; Charalambidis, G.; Coutsolelos, A. G. J. Carbon Res. 2019, 5, 57.
[11]
Bottari, G.; Trukhina, O.; Ince, M.; Torres, T. Coord. Chem. Rev. 2012, 256, 2453.
[12]
Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 5826.
[13]
Moran, J. R.; Ericson, J. L.; Dalcanale, E.; Bryant, J. A.; Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. 1991, 113, 5707.
[14]
Cram, D. J.; Choi, H.; Bryant, J. A.; Knobler, C. B. J. Am. Chem. Soc. 1992, 114, 7748.
[15]
Soncini, P.; Bonsignore, S.; Dalcanale, E.; Ugozzoli, F. J. Org. Chem. 1992, 57, 17.
[16]
Skinner, P. J.; Cheetham, A. G.; Beeby, A.; Gramlich, V.; Diederich, F. Helv. Chim. Acta 2001, 84, 2146.
[17]
Azov, V. A.; Diederich, F.; Lill, Y.; Hecht, B. Helv. Chim. Acta 2003, 86, 2149.
[18]
Azov, V. A.; Jaun, B.; Diederich, F. Helv. Chim. Acta 2004, 87, 449.
[19]
Azov, V. A.; Schlegel, A.; Diederich, F. Angew. Chem. Int. Ed. 2005, 44, 4635.
[20]
Azov, V. A.; Beeby, A.; Cacciarini, M.; Cheetham, A. G.; Diederich, F.; Frei, M.; Gimzewski, J. K.; Gramlich, V.; Hecht, B.; Jaun, B.; Latychevskaia, T.; Lieb, A.; Lill, Y.; Marotti, F.; Schlegel, A.; Schlitterler, R. R.; Skinner, P. J.; Seiler, P.; Yamakoshi, Y. Adv. Funct. Mater. 2006, 16, 147.
[21]
Frei, M.; Marotti, F.; Diederich, F. Chem. Commun. 2004, 1362.
[22]
Pochorovski, I.; Diederich, F. Acc. Chem. Res. 2014, 47, 2096.
[23]
Pochorovski, I.; Ebert, M. O.; Gisselbrecht, J. P.; Boudon, C.; Schweizer, W. B.; Diederich, F. J. Am. Chem. Soc. 2012, 134, 14702.
[24]
Pochorovski, I.; Knehans, T.; Nettels, D.; Müller, A. M.; Schweizer, W. B.; Caflisch, A.; Schuler, B.; Diederich, F. J. Am. Chem. Soc. 2014, 136, 2441.
[25]
Xu, H.; Zhao, S.; Ren, Y.; Cai, J.; Wang, X.; Lin, Y. Chem. J. Chinese U. 2015, 36, 2421. (in Chinese)
[25]
(徐海, 赵斯祺, 任扬, 蔡健峰, 汪翔, 林雨霖, 高等学校化学学报, 2015, 36, 2421.)
[26]
Liang, Y.; Tang, J.; Wang, X.; Zhao, S.; Luo, T.; Shuai, C.; Jiang, J.; Cai, J.; Xu, H. ChemistrySelect 2018, 3, 5361.
[27]
Liang, Y.; Wang, X.; Zhao, S.; He, P.; Luo, T.; Jiang, J.; Liang, W.; Cai, J.; Xu, H. ChemistrySelect 2019, 4, 10316.
[28]
Calderon-Cerquera, K.; Parra, A.; Madrid-Úsuga, D.; Cabrera- Espinoza, A.; Melo-Luna, C. A.; Reina, J. H.; Insuasty, B.; Ortiz, A. Dyes Pigments 2021, 184, 108752.
[29]
Che, Y.; Yuan, X.; Sun, L.; Xu, H.; Zhao, X.; Cai, F.; Liu, L.; Zhao, J. J. Mater. Chem. C 2020, 8, 15839.
[30]
Fu, B.; Che, Y.; Yuan, X.; Sun, L.; Xu, H.; Zhao, J.; Liu, L. Dyes Pigments 2021, 196, 109754.
文章导航

/