收稿日期: 2022-06-14
网络出版日期: 2022-08-08
基金资助
中国科技部重点研发计划(2021YFA1500100); 国家自然科学基金(91956112); 国家自然科学基金(21572245); 及上海市科委基础研究项目(17JC1401200); 及上海市科委基础研究项目(18JC1415600)
Advances in Organic Electrochemical Synthesis
Received date: 2022-06-14
Online published: 2022-08-08
Supported by
National Key Research & Development Program of China(2021YFA1500100); National Natural Science Foundation of China(91956112); National Natural Science Foundation of China(21572245); Program of Shanghai Science and Technology Committee(17JC1401200); Program of Shanghai Science and Technology Committee(18JC1415600)
有机电化学合成已成为一种实用、环境友好的合成方法, 广泛应用于氧化、还原以及氧化还原中性反应. 通过精准调控电流或者电位可在温和反应条件下实现一些具有挑战性的化学转化. 然而, 有机电化学反应也存在电极钝化、反应类型受限以及反应活性和选择性不易调控等难题. 日益紧张的能源和环境问题使得电化学合成近年来备受关注. 该综述的主要对象为有机溶液体系中的电化学合成, 从直接电解和间接电解两方面阐述近年来为解决这些难题所取得的进展. 在直接电解方面主要是通过合理的有机电化学反应设计、改变电解模式及设备或者将电化学技术与其它的化学合成技术相融合, 解决电极钝化、反应类型受限等问题. 在间接电解方面主要是利用有机分子或者过渡金属作为分子电催化剂去调控电极和底物之间的电子转移以及反应选择性, 实现一些选择性可控的化学转化.
王振华 , 马聪 , 方萍 , 徐海超 , 梅天胜 . 有机电化学合成的研究进展[J]. 化学学报, 2022 , 80(8) : 1115 -1134 . DOI: 10.6023/A22060260
Organic electrochemical synthesis has become a useful and environmentally friendly alternative to traditional organic synthesis and has been applied to oxidation, reduction, or redox neutral transformation. By dialing in the electric current or electrode potential, it is possible to achieve some challenging transformations under mild reaction conditions. With the increasing awareness of energy efficiency and environmental protection, organic electrochemical synthesis has attracted much attention in recent years. However, electrochemical synthesis faces several challenges including electrode passivation, limited reaction types, the difficulty of controlling reactivity and selectivity, and so on. This review focuses on electrochemical synthesis in organic solution system, and it summarizes recent efforts in addressing these challenges through direct electrolysis and indirect electrolysis. In direct electrolysis, the strategies include the rational design of electrochemical electrolysis reactions, change of electrochemical electrolysis modes and equipment, or merging of electrochemical technology with other novel synthetic technologies. In terms of indirect electrolysis, organic compounds or transition metals are mainly used as molecular electrocatalysts to shuttle the electrons between electrodes and substrates and control the reaction reactivity and selectivity, affording some challenging chemical transformations.
[1] | (a) Volta, A. G. A. J. Nat. Philos. Chem. Arts 1800, 4, 179. |
[1] | (b) Faraday, M. Ann. Phys. 1834, 109, 481. |
[1] | (c) Kolbe, H. J. Prakt. Chem. 1847, 41, 137. |
[2] | (a) Moissan, H. Comptesrendushebdomadaires des śeances de l ?Acaďemiedes sciences. 1886, 102, 1543. |
[2] | (b) Davy, H. I. Phil. Trans. R. Soc. London 1808, 98, 1. |
[3] | (a) Botte, G. G. Electrochem. Soc. Interface 2014, 23, 49. |
[3] | (b) Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215. |
[3] | (c) Pütter, H.; Hannebaum, H. Ger. Pat. 19618854 A1, 1997. |
[3] | (d) Pütter, H.; Hannebaum, H. US Pat., 6063256, 2000. |
[4] | (a) Mihelcic, J.; Moeller, K. D. J. Am. Chem. Soc. 2003, 125, 36. |
[4] | (b) Rosen, B. R.; Werner, E. W.; O’Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571. |
[4] | (c) Peters, B. K.; Rodriguez, K. X.; Reisberg, S. H.; Beil1, S. B.; Hickey, D. P.; Kawamata, Y.; Collins, M.; Starr, J.; Chen, L.; Udyavara, S.; Klunder, K.; Gorey, T. J.; Anderson, S. L.; Neurock, M.; Minteer, S. D.; Baran, P. S. Science 2019, 363, 838. |
[5] | Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. |
[6] | Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Res. 2020, 53, 72. |
[7] | (a) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309. |
[7] | (b) Yuan, Y.; Yang, J.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058. |
[8] | (a) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179. |
[8] | (b) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300. |
[9] | (a) Roeckl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45. |
[9] | (b) Pollok, D.; Waldvogel, S. R. Chem. Sci. 2020, 11, 12386. |
[10] | Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339. |
[11] | (a) Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547. |
[11] | (b) Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50, 7941. |
[12] | Gandeepan, P.; Finger, L. H.; Meyer, T. H.; Ackermann, L. Chem. Soc. Rev. 2020, 49, 4254. |
[13] | Zhu, C.; Ang, N. W. J.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Cent. Sci. 2021, 7, 415. |
[14] | (a) Yamamoto, K.; Kuriyama, M.; Onomura, O. Acc. Chem. Res. 2020, 53, 105. |
[14] | (b) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485. |
[15] | Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033. |
[16] | Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710. |
[17] | Chang, X.; Zhang, Q.; Guo, C. Angew. Chem. Int. Ed. 2020, 59, 12612. |
[18] | Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738. |
[19] | Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492. |
[20] | (a) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834. |
[20] | (b) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561. |
[21] | Malapit, C. A.; Prater, M. B.; Cabrera-Pardo, J. R.; Li, M.; Pham, T. D.; McFadden, T. P.; Blank, S.; Minteer, S. D. Chem. Rev. 2022, 122, 3180. |
[22] | (a) Elsherbini, M.; Wirth, T. Acc. Chem. Res. 2019, 52, 3287. |
[22] | (b) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573. |
[22] | (c) Hilt, G. ChemElectroChem 2020, 7, 395. |
[22] | (d) Sbei, N.; Hardwick, T.; Ahmed, N. ACS Sustain. Chem. Eng. 2021, 9, 6148. |
[22] | (e) Zhang, W.; Hong, N.; Song, L.; Fu, N. Chem. Rec. 2021, 21, 2574. |
[22] | (f) Ma, C.; Fang, P.; Liu, D.; Jiao, K.-J.; Gao, P.-S.; Qiu, H.; Mei, T.-S. Chem. Sci. 2021, 12, 12866. |
[22] | (g) Ma, C.; Fang, P.; Liu, D.; Jiao, K.-J.; Gao, P.-S.; Qiu, H.; Mei, T.-S. Sci. Bull. 2021, 66, 2412. |
[22] | (h) Cheng, X.; Lei, A.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4, 1120. |
[22] | (i) Claraz, A.; Masson, G. ACS Org. Inorg. Au 2022, 2, 126. |
[23] | Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877. |
[24] | Steckhan, E. Angew. Chem. Int. Ed. Engl. 1986, 28, 683. |
[25] | (a) Kolbe, H. Prakt. Chem. 1847, 41, 138. |
[25] | (b) Tafel, J.; Hahl, H. Ber. Dtsch. Chem. Ges. 1907, 40, 3312. |
[26] | Shono, T. Tetrahedron 1984, 40, 811. |
[27] | Simons, J. H. J. Electrochem. Soc. 1949, 95, 47. |
[28] | Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215. |
[29] | Cao, W.; Ge, W.; Huang, W. Chin. J. Org. Chem. 1987, 7, 133. (in Chinese) |
[29] | (曹文娟, 葛文正, 黄维垣, 有机化学, 1987, 7, 133.) |
[30] | Wang, Z.; Zhou, W. Chin. J. Org. Chem. 1988, 8, 372. (in Chinese) |
[30] | (王志勤, 周文娟, 有机化学, 1988, 8, 372.) |
[31] | Wang, Z.; Zhou, W. Chin. J. Org. Chem. 1988, 8, 462. (in Chinese) |
[31] | (王志勤, 周文娟, 有机化学, 1988, 8, 462.) |
[32] | Du, X.; Yang, B.; Hu, C.; Qian, D.; Shen, T.; Tang, R. Acta Chim. Sinica 1989, 47, 788. (in Chinese) |
[32] | (杜雪梅, 杨冰华, 胡昌明, 钱道荪, 沈天憬, 唐瑞平, 化学学报, 1989, 47, 788.) |
[33] | Shen, X.; Hu, C. Chin. J. Org. Chem. 1993, 13, 122. (in Chinese) |
[33] | (沈雪明, 胡昌明, 有机化学, 1993, 13, 122.) |
[34] | Wang, H.; He, M.; Li, Y.; Zhang, H.; Yang, D.; Nagasaka, M.; Lv, Z.; Guan, Z.; Cao, Y.; Gong, F.; Zhou, Z.; Zhu, J.; Samanta, S.; Chowdhury, A. D.; Lei, A. J. Am. Chem. Soc. 2021, 143, 3628. |
[35] | Liu, S.; Cheng, X. Nature Commun. 2022, 13, 425. |
[36] | Li, L.; Li, Y.; Fu, N.; Zhang, L.; Luo, S. Angew. Chem. Int. Ed. 2020, 59, 14347. |
[37] | Chang, X.; Zhang, J.; Zhang, Q.; Guo, C. Angew. Chem. Int. Ed. 2020, 59, 18500. |
[38] | Wu, T.; Nguyen, B. H.; Daugherty, M. C.; Moeller, K. D. Angew. Chem. Int. Ed. 2019, 58, 3562. |
[39] | Hartmer, M. F.; Waldvogel, S. R. Chem. Commun. 2015, 51, 16346. |
[40] | Dong, X.; Roeckl, J. L.; Waldvogel, S. R.; Morandi, B. Science 2021, 371, 507. |
[41] | Mo, Y.; Lu, Z.; Rughoobur, G.; Patil, P.; Gershenfeld, N.; Akinwande, A. I.; Buchwald, S. L.; Jensen, K. F. Science 2020, 368, 1352. |
[42] | (a) Huang, C.; Qian, X.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58, 6650. |
[42] | (b) Huang, C.; Li, Z.-Y.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2021, 60, 11237. |
[43] | (a) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573. |
[43] | (b) Pokhrel, T.; Bijaya, B. K.; Giri, R.; Adhikari, A.; Ahmed, N. Chem. Rec. 2022, 22, e202100338. |
[44] | (a) Liu, J.; Lu, L.; Wood, D.; Lin, S. ACS Cent. Sci. 2020, 6, 1317. |
[44] | (b) Meyer, T. H.; Choi, I.; Tian, C.; Ackermann, L. Chem 2020, 6, 2484. |
[44] | (c) Wang, F.; Stahl, S. S. Angew. Chem. Int. Ed. 2019, 58, 6385. |
[44] | (d) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318. |
[44] | (e) Capaldo, L.; Quadri, L. L.; Ravelli, D. Angew. Chem. Int. Ed. 2019, 58, 17508. |
[44] | (f) Zhang, W.; Carpenter, K. L.; Lin, S. Angew. Chem. Int. Ed. 2020, 59, 409. |
[44] | (g) Barham, J. P.; Konig, B. Angew. Chem. Int. Ed. 2020, 59, 11732. |
[44] | (h) Qiu, Y.; Scheremetjew, A.; Finger, L. H.; Ackermann, L. Chem. Eur. J. 2020, 26, 3241. |
[44] | (i) Yu, Y.; Guo, P.; Zhong, J.-S.; Yuan, Y.; Ye, K.-Y. Org. Chem. Front. 2020, 7, 131. |
[44] | (j) Huang, H.; Strater, Z. M.; Lambert, T. H. J. Am. Chem. Soc. 2020, 142, 1698. |
[44] | (k) Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. J. Am. Chem. Soc. 2020, 142, 2087. |
[44] | (l) Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. J. Am. Chem. Soc. 2020, 142, 2093. |
[44] | (m) Niu, L.; Jiang, C.; Liang, Y.; Liu, D.; Bu, F.; Shi, R.; Chen, H.; Chowdhury, A. D.; Lei, A. J. Am. Chem. Soc. 2020, 142, 17693. |
[45] | Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58, 4592. |
[46] | Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 10626. |
[47] | Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 14275. |
[48] | (a) Rein, J.; Annand, J. R.; Wismer, M. K.; Fu, J.; Siu, J. C.; Klapars, A.; Strotman, N. A.; Kalyani, D.; Lehnherr, D.; Lin, S. ACS Cent. Sci. 2021, 7, 1347. |
[48] | (b) Wills, A. G.; Charvet, S.; Battilocchio, C.; Scarborough, C. C.; Wheelhouse, K. M. P.; Poole, D. L.; Carson, N.; Vantourout, J. C. Org. Process Res. Dev. 2021, 25, 2587. |
[49] | Qiu, W.; Wang, Z. J. Chem. Soc. Chem. Commun. 1989, 356. |
[50] | Wu, W.-M.; Wu, Y.-L. J. Chem. Soc. Perkin Trans. 2000, 1, 4279. |
[51] | Lian, F.; Xu, K.; Zeng, C. Chem. Rec. 2021, 21, 1. |
[52] | Li, Y.; Sun, C.-C.; Zeng, C.-C. J. Electroanal. Chem. 2020, 861, 113941. |
[53] | Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443. |
[54] | Zhang, Z.; Su, J.; Zha, Z.; Wang, Z. Chem. Commun. 2013, 49, 8982. |
[55] | Steckhan, E. Angew. Chem. Int. Ed. 1986, 25, 683. |
[56] | Cai, C.-Y.; Xu, H.-C. Nat. Commun. 2018, 9, 3551. |
[57] | Cai, C.-Y.; Shu, X.-M.; Xu, H.-C. Nat. Commun. 2019, 10, 4953. |
[58] | Wu, Z.-J.; Li, S.-R.; Xu, H.-C. Angew. Chem. Int. Ed. 2018, 57, 14070. |
[59] | Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039. |
[60] | Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 2226 |
[61] | Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 9168. |
[62] | Wu, Z.-J.; Xu, H.-C. Angew. Chem. Int. Ed. 2017, 56, 4734. |
[63] | Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460. |
[64] | Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. ACS Catal. 2017, 7, 2730. |
[65] | Ma, Y.; Yao, X.; Zhang, L.; Ni, P.; Cheng, R.; Ye, J. Angew. Chem. Int. Ed. 2019, 58, 16548. |
[66] | Gao, P.-S.; Weng, X.-J.; Wang, Z.-H.; Zheng, C.; Sun, B.; Chen, Z.-H.; You, S. L.; Mei, T.-S. Angew. Chem. Int. Ed. 2020, 59, 15254. |
[67] | Wang, Z.-H.; Gao, P.-S.; Wang, X.; Gao, J.-Q.; Xu, X.-T.; He, Z.; Ma, C.; Mei, T.-S. J. Am. Chem. Soc. 2021, 143, 15599. |
[68] | Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292. |
[69] | (a) Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310. |
[69] | (b) Aiso, H.; Kochi, T.; Mutsutani, H.; Tanabe, T.; Shigeru Nishiyama, S.; Kakiuchi, F. J. Org. Chem. 2012, 77, 7718. |
[69] | (c) Konishi, M.; Tsuchida, K.; Sano, K.; Kochi, T.; Kakiuchi, F. J. Org. Chem. 2017, 82, 8716. |
[70] | (a) Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. H. Eur. J. Org. Chem. 2012, 2114. |
[70] | (b) Dudkina, Y. B.; Mikhaylov, D. Y.; Gryaznova, T. V.; Tufatullin, A. I.; Kataeva, O. N.; Vicic, D. A.; Budnikova, Y. H. Organometallics 2013, 32, 4785. |
[71] | Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei, T.-S. J. Am. Chem. Soc. 2017, 139, 3293. |
[72] | Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204. |
[73] | Zhang, L.; Hu, X. Chem. Sci. 2020, 11, 10786. |
[74] | Ma, Y.; Hong, J.; Yao, X.; Liu, C.; Zhang, L.; Fu, Y.; Sun, M.; Cheng, R.; Li, Z.; Ye, J. Org. Lett. 2021, 23, 9387. |
[75] | (a) Li, Y.-Q.; Yang, Q.-L.; Fang, P.; Mei, T.-S.; Zhang, D. Org. Lett. 2017, 19, 2905. |
[75] | (b) Ma, C.; Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.-T.; Zhang, K.; Mei, T.-S. Chem. Commun. 2017, 53, 12189. |
[75] | (c) Yang, Q.-L.; Wang, X.-Y.; Weng, X.-J.; Yang, X.; Xu, X.-T.; Tong, X.; Fang, P.; Wu, X.-Y.; Mei, T.-S. Acta Chim. Sinica 2019, 77, 866. (in Chinese) |
[75] | (杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866). |
[75] | (d) Yang, Q.-L.; Wang, X.-Y.; Wang, T.-L.; Yang, X.; Liu, D.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Org. Lett. 2019, 21, 2645. |
[75] | (e) Yang, Q.-L.; Li, C.-Z.; Zhang, L.-W.; Li, Y.-Y.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Organometallics 2019, 38, 1208. |
[76] | Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487. |
[77] | Luo, M.-J.; Zhang, T.-T.; Cai, F.-J.; Li, J.-H.; He, D.-L. Chem. Commun. 2019, 55, 7251. |
[78] | Yang, Q.-L.; Xing, Y.-K.; Weng, X.-J.; Yang, X.; Guo, H.-M.; Mei, T.-S. J. Am. Chem. Soc. 2019, 141, 18970. |
[79] | Xing, Y.-K.; Chen, X.-R.; Yang, Q.-L.; Guo, H.-M.; Hong, X.; Mei, T.-S. Nat. Commun. 2021, 12, 930. |
[80] | Jiao, K.-J.; Liu, D.; Ma, H.-X.; Qiu, H.; Fang, P.; Mei, T.-S. Angew. Chem., Int. Ed. 2020, 59, 6520. |
[81] | Gadde, S. K.; Peshkov, A.; Brzozowska, A.; Nikolaienko, P.; Zhu, C.; Rueping, M. Angew. Chem. Int. Ed. 2020, 59, 6513. |
[82] | Durandetti, M.; Périchon, J.; Nédélec, J.-Y. J. Org. Chem. 1997, 62, 7914. |
[83] | DeLano, T. J.; Reisman, S. E. ACS Catal. 2019, 9, 6751. |
[84] | Qiu, H.; Shuai, B.; Wang, Y.-Z.; Liu, D.; Chen, Y.-G.; Gao, P.-S.; Ma, H.-X.; Chen, S.; Mei, T.-S. J. Am. Chem. Soc. 2020, 142, 9872. |
[85] | Dhawa, U.; Tian, C,; Oliveira, J. C. A.; Hao, J.; Ackermann, L. Angew. Chem. Int. Ed. 2020, 59, 13451. |
[86] | Huang, Y.-Q.; Wu, Z.-J.; Zhu, L.; Gu, Q.; Lu, X.; You, S.-L.; Mei, T.-S. CCS Chem. 2021, 3, 3501. |
[87] | Liu, D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem. Int. Ed. 2019, 58, 5033. |
[88] | Wang, Y.; Deng, L.; Wang, X.; Wu, Z.; Wang, Y.; Pan, Y. ACS Catal. 2019, 9, 1630. |
[89] | Liu, D.; Liu, Z.-R.; Ma, C.; Jiao, K.-J.; Sun, B.; Wei, L.; Lefranc, J.; Herbert, S.; Mei, T.-S. Angew. Chem. Int. Ed. 2021, 60, 9444. |
[90] | Li, Z.; Sun, W.; Wang, X.; Li, L.; Zhang, Y.; Li, C. J. Am. Chem. Soc. 2021, 143, 3536. |
[91] | (a) Milton, R. D.; Minteer, S. D. Acc. Chem. Res. 2019, 52, 3351. |
[91] | (b) Chen, R.; Simoska, O.; Lim, K.; Grattieri, M.; Yuan, M.; Dong, F.; Lee, Y. S.; Beaver, K.; Weliwatte, S.; Gaffney, E. M.; Minteer, S. D. Chem. Rev. 2020, 120, 12903. |
[92] | (a) Yuan, R.; Watanabe, S.; Kuwabata, S.; Yoneyama, H. J. Org. Chem. 1997, 62, 2494. |
[92] | (b) Kawabata, S.; Iwata, N.; Yoneyama, H. Chem. Lett. 2000, 29, 110. |
[92] | (c) Hollmann, F.; Hofstetter, K.; Habicher, T.; Hauer, B.; Schmid, A. J. Am. Chem. Soc. 2005, 127, 6540. |
[92] | (d) Höllrigl, V.; Otto, K.; Schmid, A. Adv. Synth. Catal. 2007, 349, 1337. |
[92] | (e) Dong, F.; Chen, H.; Malapit, C. A.; Prater, M. B.; Li, M.; Yuan, M.; Lim, K.; Minteer, S. D. J. Am. Chem. Soc. 2020, 142, 8374. |
[92] | (f) Chen, H.; Cai, R.; Patel, J.; Dong, F.; Chen, H.; Minteer, S. D. J. Am. Chem. Soc. 2019, 141, 4963. |
/
〈 |
|
〉 |