聚环氧乙烷聚合物电解质基高电压固态锂金属电池的研究进展
收稿日期: 2022-07-18
网络出版日期: 2022-09-13
基金资助
广东省重点领域研发计划项目(2020B090919005); 国家自然科学基金面上项目(52073298); 中国科学院青年创新促进会(2020217); 山东省自然科学基金(ZR2019BEM037)
Key Advances of High-voltage Solid-state Lithium Metal Batteries Based on Poly(ethylene oxide) Polymer Electrolytes
Received date: 2022-07-18
Online published: 2022-09-13
Supported by
Key-Area Research and Development Program of Guangdong Province(2020B090919005); National Natural Science Foundation of China(52073298); Youth Innovation Promotion Association of CAS(2020217); Natural Science Foundation of Shandong Province(ZR2019BEM037)
采用液态碳酸酯电解质的锂离子电池在遭遇极端工况时, 极易发生泄露、燃烧、甚至爆炸等重大安全事故. 相对比, 聚环氧乙烷(PEO)固态聚合物电解质可以显著提升锂电池的安全性, 并且其优异的可塑性使其可以被制成特定形状进而满足特殊领域的差异化需求; 更为重要的是: PEO固态聚合物电解质与锂金属负极兼容性好. 然而, PEO固态聚合物电解质电化学氧化窗口低, 难以匹配高电压正极材料(≥4 V), 极大限制了其在高电压、高能量密度固态聚合物锂金属电池中的进一步应用. 近期经过国内外科研工作者在PEO固态聚合物电解质结构设计、PEO端羟基改性、含硼锂盐引入、功能型粘结剂设计开发以及正极界面层构筑等方面所做出的不懈努力, PEO固态聚合物电解质基高电压固态锂金属电池取得了系列化重大科研进展. 基于此, 本综述主要从以下八个方面: (1)高电压正极片表面修饰超薄聚合物层、(2)高电压正极颗粒包覆、(3)对碳黑颗粒进行包覆、(4)使用富含羧基的粘结剂、(5)不对称固态聚合物电解质结构设计、(6)正极界面原位形成耐高电压界面层、(7)醚氧官能团(-OCH3)封端PEO, 提升其本征耐高电压性能、(8)含硼锂盐做添加剂, 详细综述了采用PEO固态聚合物电解质构建的高电压固态锂金属电池所取得的最新研究进展以及相应的高电压固态锂金属电池界面稳定作用机制. 最后还对未来PEO固态聚合物电解质在高电压固态锂金属电池方面所存在的巨大挑战和发展趋势进行了详细展望和总结阐述.
田宋炜 , 周丽雪 , 张秉乾 , 张建军 , 杜晓璠 , 张浩 , 胡思伽 , 苑志祥 , 韩鹏献 , 李素丽 , 赵伟 , 周新红 , 崔光磊 . 聚环氧乙烷聚合物电解质基高电压固态锂金属电池的研究进展[J]. 化学学报, 2022 , 80(10) : 1410 -1423 . DOI: 10.6023/A22070314
Traditional lithium-ion batteries employing carbonate-based liquid electrolytes might suffer from safety hazards such as leakage, combustion and explosion under abused conditions. In comparison, poly(ethylene oxide) (PEO) based solid-state polymer electrolytes can significantly enhance the safety performance of lithium batteries owing to their intrinsic safety. In addition, PEO can also be made into specific shapes to meet the harsh requirements of special fields owing of their excellent plasticity. More importantly, PEO-based solid-state polymer electrolytes possess superior interfacial compatibility with lithium metal anodes, endowing PEO a very promising solid polymer electrolyte (SPE) for solid-state lithium metal batteries. However, the low electrochemical oxidation potential of PEO-based solid polymer electrolytes makes them challenge to accommodate high-voltage cathodes (≥4 V), which greatly limits the energy density of solid-state polymer lithium metal batteries. Recently, through the unremitting efforts of researchers, PEO based solid-state polymer electrolytes have made a series of significant scientific progress in the field of high-voltage solid-state lithium metal batteries. Herein, this review presents an overview on the scientific challenges, fundamental mechanisms, and design strategies for high-voltage solid-state lithium batteries based on poly(ethylene oxide) all-solid-state polymer electrolytes: (1) constructing a ultra-thin layer on high-voltage cathodes, (2) surface coating of high-voltage cathode particles, (3) surface coating of carbon black, (4) employing carboxyl-rich polymer binders, (5) the design of asymmetric SPE architecture, (6) in-situ formation of high-concentration polymeric interlayer, (7) the introduction of -OCH3 group into PEO, (8) (oxalato)borate salts as additive. At the end of this review, the potential challenges and development trend of PEO-based solid-state polymer electrolytes in high-voltage lithium metal batteries are also elaborated.
[1] | Cao, X.; Jia, H.; Xu, W.; Zhang, J.-G. J. Electrochem. Soc. 2021, 168, 010522. |
[2] | Jiang, L. L.; Yan, C.; Yao, Y. X.; Cai, W.; Huang, J. Q.; Zhang, Q. Angew. Chem., Int. Ed. 2021, 60, 3402. |
[3] | Liu, W.; Chen, Z.; Zhang, Z.; Jiang, P.; Chen, Y.; Paek, E.; Wang, Y.; Mitlin, D. Energ. Environ. Sci. 2021, 14, 382. |
[4] | Nikiforidis, G.; Raghibi, M.; Sayegh, A.; Anouti, M. J. Phys. Chem. Lett. 2021, 12, 1911. |
[5] | Wei, C.; Tan, L.; Tao, Y.; An, Y.; Tian, Y.; Jiang, H.; Feng, J.; Qian, Y. Energy Storage Mater. 2021, 34, 12. |
[6] | Chai, J.; Zhang, J.; Hu, P.; Ma, J.; Du, H.; Yue, L.; Zhao, J.; Wen, H.; Liu, Z.; Cui, G.; Chen, L. J. Mater. Chem. A 2016, 4, 5191. |
[7] | Chatterjee, K.; Pathak, A. D.; Lakma, A.; Sharma, C. S.; Sahu, K. K.; Singh, A. K. Sci. Rep. 2020, 10, 9606. |
[8] | Hou, J.; Lu, L.; Wang, L.; Ohma, A.; Ren, D.; Feng, X.; Li, Y.; Li, Y.; Ootani, I.; Han, X.; Ren, W.; He, X.; Nitta, Y.; Ouyang, M. Nat. Commun. 2020, 11, 5100. |
[9] | Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Nat. Energy 2017, 3, 22. |
[10] | Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Sci. Adv. 2018, 4, 11. |
[11] | He, M.; Su, C.-C.; Peebles, C.; Zhang, Z. J. Electrochem. Soc. 2021, 168, 010505. |
[12] | Köps, L.; Leibing, C.; Hess, L. H.; Balducci, A. J. Electrochem. Soc. 2021, 168, 010513. |
[13] | Taskovic, T.; Thompson, L. M.; Eldesoky, A.; Lumsden, M. D.; Dahn, J. R. J. Electrochem. Soc. 2021, 168, 010514. |
[14] | Xia, L.; Miao, H.; Wang, F.; Zhang, C.; Wang, J.; Zhao, J.; Yuan, J. Int. J. Energy Res. 2021, 45, 9936. |
[15] | Dong, T.; Zhang, J.; Xu, G.; Chai, J.; Du, H.; Wang, L.; Wen, H.; Zang, X.; Du, A.; Jia, Q.; Zhou, X.; Cui, G. Energ. Environ. Sci. 2018, 11, 1197. |
[16] | Yu, X.; Wang, L.; Ma, J.; Sun, X.; Zhou, X.; Cui, G. Adv. Energy Mater. 2020, 10, 1903939. |
[17] | Zhou, Q.; Zhang, J.; Cui, G. Macromol. Mater. Eng. 2018, 303, 1800337. |
[18] | Cheng, H.; Zhu, C.-B.; Yang, Y. Acta Chim. Sinica 2007, 65, 2832. (in Chinese) |
[18] | (程琥, 朱昌宝, 杨勇, 化学学报, 2007, 65, 2832.) |
[19] | Liao, R.-X.; Shen, Z.-C.; Xie, W.-H.; Zhong, J.-W.; Shi, Z.-C. Sci. Sinica Chim. 2022, 52, 38. (in Chinese) |
[19] | (廖睿熹, 沈之川, 谢文浩, 钟嘉炜, 施志聪, 中国科学:化学, 2022, 52, 38.) |
[20] | Zheng, P.-X.; Wang, X.-W.; Wang, D.; Yu, Z.-W. Acta Polym. Sinica 2021, 52, 94. (in Chinese) |
[20] | (郑鹏轩, 王向伟, 王栋, 于志伟, 高分子学报, 2021, 52, 94.) |
[21] | Wang, X.; Yang, J.-J.; Shao, L.; Li, J.-J.; Zhao, W.-F.; Ma, A.-J.; Zhang, G.; Chen, W.-X. Sci. Sinica Chim. 2019, 49, 360. (in Chinese) |
[21] | (汪勋, 杨晶晶, 邵乐, 李娇娇, 赵卫峰, 马爱洁, 张改, 陈卫星, 中国科学:化学, 2019, 49, 360.) |
[22] | Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; Zhang, X.; Zong, L.; Wang, J.; Chen, L. Q.; Qin, J.; Cui, Y. Nat. Nanotechnol. 2019, 14, 705. |
[23] | Wu, H.; Xu, Y.; Ren, X.; Liu, B.; Engelhard, M. H.; Ding, M. S.; El-Khoury, P. Z.; Zhang, L.; Li, Q.; Xu, K.; Wang, C.; Zhang, J.-G.; Xu, W. Adv. Energy Mater. 2019, 9, 1902108. |
[24] | Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.-M.; Li, F. Adv. Funct. Mater. 2020, 30, 2007172. |
[25] | Ma, J.; Liu, Z.; Chen, B.; Wang, L.; Yue, L.; Liu, H.; Zhang, J.; Liu, Z.; Cui, G. J. Electrochem. Soc. 2017, 164, A3454. |
[26] | Qiu, J.; Liu, X.; Chen, R.; Li, Q.; Wang, Y.; Chen, P.; Gan, L.; Lee, S.-J.; Nordlund, D.; Liu, Y.; Yu, X.; Bai, X.; Li, H.; Chen, L. Adv. Funct. Mater. 2020, 30, 1909392. |
[27] | Nie, K.; Wang, X.; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L. ACS Energy Lett. 2020, 5, 826. |
[28] | Li, Z.; Li, A.; Zhang, H.; Lin, R.; Jin, T.; Cheng, Q.; Xiao, X.; Lee, W.-K.; Ge, M.; Zhang, H.; Zangiabadi, A.; Waluyo, I.; Hunt, A.; Zhai, H.; Borovilas, J. J.; Wang, P.; Yang, X.-Q.; Chuan, X.; Yang, Y. Nano Energy 2020, 72, 104655. |
[29] | Liang, J. N.; Sun, Y. P.; Zhao, Y.; Sun, Q.; Luo, J.; Zhao, F. P.; Lin, X. T.; Li, X.; Li, R. Y.; Zhang, L.; Lu, S. G.; Huang, H.; Sun, X. L. J. Mater. Chem. A 2020, 8, 2769. |
[30] | Liang, J.; Chen, D.; Adair, K.; Sun, Q.; Holmes, N. G.; Zhao, Y.; Sun, Y.; Luo, J.; Li, R.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Zhang, X.; Singh, C. V.; Sun, X. Adv. Energy Mater. 2021, 11, 2002455. |
[31] | Zhou, W.; Wang, Z.; Pu, Y.; Li, Y.; Xin, S.; Li, X.; Chen, J.; Goodenough, J. B. Adv. Mater. 2019, 31, 1805574. |
[32] | Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G. Adv. Sci. 2019, 6, 1901036. |
[33] | Bae, J.; Zhang, X.; Guo, X.; Yu, G. Nano Lett. 2021, 21, 1184. |
[34] | Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; Liang, J.; Li, W.; Li, J.; Liu, Y.; Huang, H.; Zhang, L.; Lu, S.; Lu, Q.; Li, R.; Singh, C. V.; Sun, X. Energ. Environ. Sci. 2020, 13, 1318. |
[35] | Samson, H.; Liu, C.; Zhu, F. Y.; Zhao, L.; Fan, R.; Chung, C. Y.; Tang, J. N.; Zeng, X. R.; He, Y. B. Nano Energy 2021, 80, 105562. |
[36] | Wang, L.; Ma, J.; Wang, C.; Yu, X.; Liu, R.; Jiang, F.; Sun, X.; Du, A.; Zhou, X.; Cui, G. Adv. Sci. 2019, 6, 1900355. |
[37] | Xu, G.; Pang, C.; Chen, B.; Ma, J.; Wang, X.; Chai, J.; Wang, Q.; An, W.; Zhou, X.; Cui, G.; Chen, L. Adv. Energy Mater. 2018, 8, 1701398. |
[38] | Xia, Y.; Fujieda, T.; Tatsumi, K.; Prosini, P.; Sakai, T. J. Power Sources 2001, 92, 234. |
[39] | Han, Y.; Zhu, X.; He, Y.; Wang, C. Adv. Energy Mater. 2016, 6, 1501590. |
/
〈 |
|
〉 |