刺激响应型树状分子凝胶的研究进展※
收稿日期: 2022-08-19
网络出版日期: 2022-09-14
基金资助
国家自然科学基金(21871270); 国家自然科学基金(21472192); 山西大同大学博士启动基金(2019-B-01); 山西大同自然科学项目(2020YGZX011); 中国科学院海洋新材料与应用技术重点实验室开放基金(2021K02)
Progress in Stimulus-Responsive Dendritic Gels※
Received date: 2022-08-19
Online published: 2022-09-14
Supported by
National Natural Science Foundation of China(21871270); National Natural Science Foundation of China(21472192); Doctor Research Fund of Shanxi Datong University(2019-B-01); Science Foundation of Shanxi Datong University(2020YGZX011); Open Research Fund of Key Laboratory of Marine Materials and Related Technologies, CAS(2021K02)
近年来, 刺激响应型超分子凝胶作为一类智能软物质材料, 在离子识别材料、自修复材料、生物材料和药物缓释等领域展现出了非常好的应用前景, 受到人们广泛关注. 树状分子是一类具有高度支化结构的大分子, 其形成的凝胶兼具有机小分子凝胶和聚合物凝胶的双重优点, 树状分子丰富的多层次支化几何结构有利于修饰不同功能基团, 从而确保各功能基团彼此独立作用而不相互干扰, 这种特性使其在构筑多功能化凝胶材料, 尤其是多重环境刺激响应型凝胶材料方面具有独特优势. 基于此, 本综述从树状分子凝胶因子设计、成凝胶机理、响应性能和响应机理等方面详细归纳了刺激响应型树状分子凝胶的研究进展. 按照刺激源不同, 主要从光响应型、氧化还原响应型、离子响应型、触变响应型和多重响应型五个方面对刺激响应树状分子凝胶进行了系统归纳总结. 最后, 基于目前刺激响应树状分子凝胶存在的一些问题对该领域未来发展进行了展望.
刘志雄 , 初庆凯 , 冯宇 . 刺激响应型树状分子凝胶的研究进展※[J]. 化学学报, 2022 , 80(10) : 1424 -1435 . DOI: 10.6023/A22080363
In recent years, stimulus-responsive supramolecular gels, as a class of smart soft matter materials, have shown very promising applications in the fields of ion recognition materials, self-healing materials, biomaterials and drug release, and have attracted increasing attentions. Dendrimers and dendrons are highly branched macromolecules with well-defined molecular architecture and have been widely used as building blocks in the self-assembling of supramolecular gel-phase materials. The unique dendritic architectures make the dendritic molecules as ideal candidates to be modified with various different functional moieties to develop multiple functional soft materials, which ensure each functionality to work independently without interfering. This characteristic makes them show unique advantages in the construction of stimuli- responsive gels, especially multiple stimuli-responsive gels. The research progress of stimuli-responsive dendritic gels is summarized in detail from the aspects of dendritic gel design, gel-formation mechanism, response performance and response mechanism. Based on the different stimulus, the stimulus-responsive dendritic gels are classfied into the following categories: light-responsive dendritic gel, redox-responsive dendritic gel, ion-responsive dendritic gel, thixotropic-responsive dendritic gel and multiple-responsive dendritic gel. In addition, the current challenges and perspectives on stimulus-responsive dendritic gels are also discussed.
Key words: supramolecular gels; dendrimer; stimuli-responsive; smart materials; progress
| [1] | Molecular Gels: Materials with Self-Assembled Fibrillar Networks, Eds.: Weiss, R. G.; Terech, P., Springer, Amsterdam, 2006. |
| [2] | Functional Molecular Gels, Eds.: Escuder, B.; Miravet, J. F., The Royal Society of Chemistry, 2014. |
| [3] | Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133. |
| [4] | Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Chem. Rev. 2010, 110, 1960. |
| [5] | Liu, M. H.; Ouyang, G. H.; Niu, D.; Sang, Y. T. Org. Chem. Front. 2018, 5, 2885. |
| [6] | Chen, X.; Liu, K.; Fang, Y. Prog. Chem. 2020, 32, 861. (in Chinese) |
| [6] | (陈香李, 刘凯强, 房喻, 化学进展, 2020, 32, 861.) |
| [7] | Zhao, Q.; Li, S.; Liu, Y. Prog. Chem. 2018, 30, 673. (in Chinese) |
| [7] | (赵倩, 李盛华, 刘育, 化学进展, 2018, 30, 673.) |
| [8] | Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Chem. Rev. 2014, 114, 1973. |
| [9] | Jin, Q.; Li, J.; Li, X.; Zhang, L.; Fang, S.; Liu, M. Prog. Chem. 2014, 26, 919. (in Chinese) |
| [9] | (靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华, 化学进展, 2014, 26, 919.) |
| [10] | Fan, W.; Chen, L.; Yang, H. Chin. J. Org. Chem. 2015, 35, 578. (in Chinese) |
| [10] | (范文佳, 陈丽君, 杨海波, 有机化学, 2015, 35, 578.) |
| [11] | Yang, H.; Zhang, Y.; Li, Y.; Wang, J.; Li, X.; Song, J.; Zhang, B.; Feng, Y. Chin. J. Org. Chem. 2017, 37, 1991. (in Chinese) |
| [11] | (杨贺玮, 张宇哲, 李艳杰, 王京翔, 李小萌, 宋健, 张宝, 冯亚青, 有机化学, 2017, 37, 1991.) |
| [12] | Wang, J.; Li, A.; Li, Z. Prog. Chem. 2022, 34, 487. (in Chinese) |
| [12] | (王金凤, 李爱森, 李振, 化学进展, 2022, 34, 487.) |
| [13] | Li, Z.; Ji, X. F.; Xie, H. L.; Tang, B. Z. Adv. Mater. 2021, 33, 2100021. |
| [14] | Zhang, K.; Gao, G.; Li, Y.; Song, Y.; Wen, Y.; Zhang, X. Prog. Chem. 2021, 33, 1887. (in Chinese) |
| [14] | (张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记, 化学进展, 2021, 33, 1887.) |
| [15] | Yang, X. Y.; Zhang, G. X.; Zhang, D. Q. J. Mater. Chem. 2012, 22, 38. |
| [16] | Taylor, D. L.; Panhuis, M. I. H. Adv. Mater. 2016, 28, 9060. |
| [17] | Lu, T.-T.; Liu, J.; Li, H.; Wei, T.-B.; Zhang, Y.-M.; Lin, Q. Prog. Chem. 2016, 28, 1541. (in Chinese) |
| [17] | (逯桃桃, 刘娟, 李辉, 魏太保, 张有明, 林奇, 化学进展, 2016, 28, 1541.) |
| [18] | Panja, S.; Adams, D. J. Chem. Soc. Rev. 2021, 50, 5165. |
| [19] | Cai, Z.; Zhang, B.; Jiang, L.; Li, Y.; Xu, G.; Ma, J. Prog. Chem. 2019, 31, 1653. (in Chinese) |
| [19] | (蔡紫煊, 张斌, 姜丽阳, 许国贺, 马晶军,李允译, 化学进展, 2019, 31, 1653.) |
| [20] | Dendrimers: Towards Catalytic, Material and Biomedical Uses, Eds.: Caminade, A.-M.; Turrin, C.-O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B., Wiley-VCH, Weinheim, 2011. |
| [21] | Vögtle, F.; Richardt, G.; Werner, N. Dendrimer Chemistry: Concepts, Synthesis, Properties, Applications, Wiley-VCH, Weinheim, 2009. |
| [22] | Smith, D. K. Adv. Mater. 2006, 18, 2773. |
| [23] | Feng, Y.; He, Y. M.; Fan, Q. H. Chem. Asian J. 2014, 9, 1724. |
| [24] | Kaga, S.; Arslan, M.; Sanyal, R.; Sanyal, A. Molecules 2016, 21, 497. |
| [25] | Feng, Y.; Liu, Z. X.; Chen, H.; Fan, Q. H. Chem. Commun. 2022, 58, 8736. |
| [26] | Newkome, G. R.; Baker, G. R.; Saunders, M. J.; Russo, P. S.; Gupta, V. K.; Yao, Z. Q.; Miller, J. E.; Bouillion, K. J. Chem. Soc. Chem. Commun. 1986, 752. |
| [27] | Jang, W. D.; Jiang, D. L.; Aida, T. J. Am. Chem. Soc. 2000, 122, 3232. |
| [28] | Pianowski, Z. L. Molecular Photoswitches-Chemistry, Properties, and Applications, Wiley-VCH, Weinheim, 2022. |
| [29] | Ji, Y.; Kuang, G. C.; Jia, X. R.; Chen, E. Q.; Wang, B. B.; Li, W. S.; Wei, Y.; Lei, J. Chem. Commun. 2007, 4233. |
| [30] | Kim, J. H.; Seo, M.; Kim, Y. J.; Kim, S. Y. Langmuir 2009, 25, 1761. |
| [31] | Xie, F.; Ouyang, G. H.; Qin, L.; Liu, M. H. Chem. Eur. J. 2016, 22, 18208. |
| [32] | Chen, Q.; Feng, Y.; Zhang, D. Q.; Zhang, G. X.; Fan, Q. H.; Sun, S. N.; Zhu, D. B. Adv. Funct. Mater. 2010, 20, 36. |
| [33] | Sako, Y.; Takaguchi, Y. Org. Biomol. Chem. 2008, 6, 3843. |
| [34] | Kuang, G. C.; Ji, Y.; Jia, X. R.; Li, Y.; Chen, E. Q.; Zhang, Z. X.; Wei, Y. Tetrahedron 2009, 65, 3496. |
| [35] | Sui, X.; Feng, X.; Hempenius, M. A.; Vancso, G. J. J. Mater. Chem. B 2013, 1, 1658. |
| [36] | Fukino, T.; Yamagishi, H.; Aida, T. Adv. Mater. 2017, 29, 1603888. |
| [37] | Yang, X. Y.; Zhang, G. X.; Li, L. Q.; Zhang, D. Q.; Chi, L. F.; Zhu, D. B. Small 2012, 8, 578. |
| [38] | Liu, Y. C.; Lei, W. W.; Chen, T.; Jin, L. Y.; Sun, G. Y.; Yin, B. Z. Chem. Eur. J. 2015, 21, 15235. |
| [39] | Lakshmi, N. V.; Mandal, D.; Ghosh, S.; Prasad, E. Chem. Eur. J. 2014, 20, 9002. |
| [40] | Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A. Chem. Rev. 2015, 115, 8038. |
| [41] | Kim, H.-J.; Lee, J.-H.; Lee, M. Angew. Chem. Int. Ed. 2005, 44, 5810. |
| [42] | Teng, M. J.; Kuang, G. C.; Jia, X. R.; Gao, M.; Li, Y.; Wei, Y. J. Mater. Chem. 2009, 19, 5648. |
| [43] | Xu, D. F.; Liu, X. L.; Lu, R.; Xue, P. C.; Zhang, X. F.; Zhou, H. P.; Jia, J. H. Org. Biomol. Chem. 2011, 9, 1523. |
| [44] | Rajamalli, P.; Prasad, E. Org. Lett. 2011, 13, 3714. |
| [45] | Rajamalli, P.; Prasad, E. Soft Matter 2012, 8, 8896. |
| [46] | Rajamalli, P.; Prasad, E. Langmuir 2013, 29, 1609. |
| [47] | Liu, Z. X.; Sun, Y. H.; Feng, Y.; Chen, H.; He, Y. M.; Fan, Q. H. Chem. Commun. 2016, 52, 2269. |
| [48] | Zhao, G. Z.; Chen, L. J.; Wang, W.; Zhang, J.; Yang, G.; Wang, D. X.; Yu, Y. H.; Yang, H. B. Chem. Eur. J. 2013, 19, 10094. |
| [49] | Sebastian, A.; Prasad, E. Langmuir 2020, 36, 10537. |
| [50] | Liu, Y.; Deng, Y.; Dong, H. M.; Liu, K. K.; He, N. Y. Sci. China Chem. 2017, 60, 329. |
| [51] | Rajamalli, P.; Malakar, P.; Atta, S.; Prasad, E. Chem. Commun. 2014, 50, 11023. |
| [52] | Yu, X. D.; Chen, L. M.; Zhang, M. M.; Yi, T. Chem. Soc. Rev. 2014, 43, 5346. |
| [53] | Percec, V.; Peterca, M.; Yurchenko, M. E.; Rudick, J. G.; Heiney, P. A. Chem. Eur. J. 2008, 14, 909. |
| [54] | Feng, Y.; Liu, Z. T.; Liu, J.; He, Y. M.; Zheng, Q. Y.; Fan, Q. H. J. Am. Chem. Soc. 2009, 131, 7950. |
| [55] | Feng, Y.; Liu, Z.-X.; Chen, H.; Yan, Z.-C.; He, Y.-M.; Liu, C.-Y.; Fan, Q.-H. Chem. Eur. J., 2014, 20, 7069. |
| [56] | Sun, Z.; Huang, Q.; He, T.; Li, Z.; Zhang, Y.; Yi, L. ChemPhysChem 2014, 15, 2421. |
| [57] | Liu, Z. X.; Feng, Y.; Yan, Z. C.; He, Y. M.; Liu, C. Y.; Fan, Q. H. Chem. Mater. 2012, 24, 3751. |
| [58] | Liu, J.; Feng, Y.; Liu, Z. X.; He, Y. M.; Fan, Q. H. Chem. Asian J. 2013, 8, 572. |
| [59] | Liu, Z. X.; Feng, Y.; Zhao, Z. Y.; Yan, Z. C.; He, Y. M.; Luo, X. J.; Liu, C. Y.; Fan, Q. H. Chem. Eur. J. 2014, 20, 533. |
| [60] | Chen, H.; Feng, Y.; Deng, G. J.; Liu, Z. X.; He, Y. M.; Fan, Q. H. Chem. Eur. J. 2015, 21, 11018. |
| [61] | Liu, Z.; Hao, X.; Fang, W.; Feng, Y. Chemistry (Huaxue Tongbao) 2022, 85, 78. (in Chinese) |
| [61] | (刘志雄, 郝晓宇, 房微魏, 冯宇, 化学通报, 2022, 85, 78.) |
| [62] | Hao, X. Y.; Liu, Z. X.; Qin, J.; Jin, X. Y.; Liu, L. Z.; Zhai, H.; Yang, W. F.; Yan, Z. C.; Feng, Y. Chem. Asian J. 2022, 17, e202101135. |
/
| 〈 |
|
〉 |