双金属氮化物NiMoN析氢催化剂制备及其电解海水析氢性能的研究
收稿日期: 2022-07-15
网络出版日期: 2022-09-19
基金资助
国家自然科学基金(22008134)
Preparation of Highly Active Transition Bimetallic Nitride NiMoN Hydrogen Evolution Reaction (HER) Catalyst and Its Performance Study in Seawater Electrolysis
Received date: 2022-07-15
Online published: 2022-09-19
Supported by
National Natural Science Foundation of China(22008134)
电解水制氢是最具潜力的绿氢制备技术, 而高效析氢反应(HER)催化剂的开发对其大规模推广意义重大. 选用氯化镍和钼酸铵为镍源和钼源, 通过原位生长法获得NiMo双金属催化剂前驱体, 再以二腈二胺为氮源, 高温氮化-程序升温法制备了一系列NiMoxN@NC催化剂(x代表钼酸铵和氯化镍的物质的量比), 并对催化剂进行了结构、形貌以及金属价态表征. 分别在1 mol/L KOH碱液以及模拟海水中分析了析氢(HER)性能. 结果表明, 碱液中NiMoxN@NC催化剂均具有良好的电荷转移速率(Rct<1 Ω), 具有较好的内在催化活性(Tafel斜率103~168 mV/dec). 其中, NiMo0.75N@NC催化剂具有最高的极限电流(–178 mA/cm2), 最小的过电势η10=0.164 V, η100=0.448 V), 最高的内在催化活性, Tafel斜率只有103 mV/dec, 且具有较好的稳定性. 在海水中, 在10 mA/cm2和40 mA/cm2的负载电流下, NiMo0.75N@NC催化剂依旧表现出了较好的稳定性.
关键词: 氢能源; 过渡双金属氮化物催化剂; NiMoN@NC催化剂; 海水制氢; 析氢反应(HER)过程
蒋博龙 , 崔艳艳 , 史顺杰 , 姜楠 , 谭伟强 . 双金属氮化物NiMoN析氢催化剂制备及其电解海水析氢性能的研究[J]. 化学学报, 2022 , 80(10) : 1394 -1400 . DOI: 10.6023/A22070309
Hydrogen production by water electrolysis was supposed to be the most potential green hydrogen production technology. The development of high-efficiency hydrogen evolution reaction (HER) catalyst is of great significance for its large-scale promotion. In this study, nickel chloride and ammonium molybdate were used as nickel and molybdenum sources respectively to obtain the precursor of NiMo bimetallic catalyst by in-situ growth method. The dinitrile diamine was used as nitrogen source and a series of NiMoxN@NC (x represents the molar ratio of ammonium molybdate and nickel chloride) catalysts were prepared by high temperature nitridation temperature programmed method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The HER performance of as prepared catalysts was tested in 1 mol/L KOH solution and simulated seawater respectively. Results showed that all NiMoxN@NC catalysts have presented a relatively high conductivity (Rct<1 Ω) and intrinsic catalytic activity (Tafel slope of 103~168 mV/dec). Among them, the NiMo0.75N@NC catalyst posessed the highest limiting current density (–178 mA/cm2) and the lowest overpotential η at certain current densities of 10 mA/cm2 and 100 mA/cm2 (η10=0.164 V, η100=0.448 V). Furthermore, the NiMo0.75N@NC catalyst has also presented a relatively high stability in KOH solution and seawater.
[1] | Zhang, Z.-H.; Jiang, F.-J.; Wu, K.-K.; Shen, P. Acta Chim. Sinica 2022, 80, 56. (in Chinese) |
[1] | (张竹涵, 蒋峰景, 吴珂科, 申鹏, 化学学报, 2022, 80, 56.) |
[2] | Anantharaj, S.; Kundu, S.; Noda, S. J. Mater. Chem. A 2020, 8, 4174. |
[3] | Wu, Y.; Wei, W.; Yu, R.; Xia, L.; Hong, X.; Zhu, J.; Li, J.; Lv, L.; Chen, W.; Zhao, Y.; Zhou, L.; Mai, L. Adv. Funct. Mater. 2022, 32, 2110910. |
[4] | Mitchell, D. S. Int. J. Hydrogen Energ. 2022, 19, 10441. |
[5] | Lv, X.; Yin, S. Appl. Surf. Sci. 2021, 537, 147834. |
[6] | Krishna, H. R. European Journal of Biotechnology and Bioscience 2013, 1, 84. |
[7] | d’Amore-Domenech, R.; Leo, T. J. ACS Sustain. Chem. Eng. 2019, 7, 8006. |
[8] | Zhu, J.; Li, S.; Zhuang, Z.; Gao, S.; Hong, X.; Pan, X.; Yu, R.; Zhou, L.; Moskaleva, L. V.; Mai, L. Energy Environ. Mater. 2022, 5, 231. |
[9] | Silava, Y. S. K. D.; Middleton, P. H.; Kolhe, M. L. Renew. Energ. 2020, 149, 760. |
[10] | Barco-Burgos, J.; Eicker, U.; Saldna-Robles, N.; Saldana-Robles, A. L.; Alcantar-Camarena, V. Fuel 2020, 15, 117910. |
[11] | Lovell, E. C.; Lu, X. Y.; Zhang, Q. R.; Scott, J.; Amal, R. Chem. Commun. 2020, 56, 1709. |
[12] | Zhang, W.; Han, N.; Luo, J. Small 2022, 18, 2103561. |
[13] | Zhao, Y.; Zhang, J.; Xie, Y. Nano Lett. 2021, 21, 823. |
[14] | Peng, X.; Li, C. H.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Sustain. Energ. Fuels 2019, 3, 366. |
[15] | Zeng, Q.-L.; Liu, X.-C.; Liu, C.; Qi, X.-P. Acta Materiae Compositae Sinica 2021, 38, 3764. (in Chinese) |
[15] | (曾庆乐, 刘小超, 刘超, 漆小鹏, 复合材料学报, 2021, 38, 3764.) |
[16] | Zhang, Y. G.; Li, P. J.; Zhang, X. G.; Fa, W. J.; Ge, S. X. J. Alloy. Compd. 2018, 732, 248. |
[17] | Yao, S.-W.; Li, H.; Zhang, W.-G.; Wang, H.-Z.; Ben, Y.-H. Acta Materiae Compositae Sinica 2006, 23, 77. (in Chinese) |
[17] | (姚素薇, 李贺, 张卫国, 王宏智, 贲宇恒, 复合材料学报, 2006, 23, 77.) |
[18] | Qian, G.; Chen, J.; Yu, T.; Luo, L.; Yin, S. Nan-Micro Lett. 2021, 13, 77. |
[19] | Chen, W. F.; Sasaki, K.; Ma, C. Angew. Chem. Int. Ed. 2012, 51, 6131. |
[20] | Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y.; Zheng, Y.; Qiao, S. ACS Nano 2018, 12, 12761. |
[21] | Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A.; Wu, Q. Y.; Zheng, Z. P.; Tang, Z. K.; Cheng, C. Adv. Funct. Mater. 2019, 29, 1805893. |
[22] | Liu, Z.; Liu, D. Y.; Zhao, L. Y.; Tian, J.; Yang, J.; Feng, L. J. Mater. Chem. A 2020, 9, 7750. |
[23] | Carmo, M.; Frit, D. L.; Mergel, J.; Stolten, D. Int. J. Hydrogen Energ. 2013, 38, 4901. |
[24] | Song, F.; Li, W.; Yang, J.; Han, G.; Liao, P.; Sun, Y. Nat. Commun. 2018, 9, 4531. |
[25] | Gong, Y.; Wang, L.; Xiong, H.; Shao, M. F.; Xu, L. D.; Xie, A.; Zhuang, S. X.; Tang, Y.; Yang, X. J.; Chen, Y. M.; Wan, P. Y. J. Mater. Chem. A 2019, 7, 13671. |
[26] | Ma, B.; Liu, Y.; Li, J.; Lin, K.; Liu, W.; Zhan, H. Int. J. Hydrogen Energ. 2016, 47, 22009. |
[27] | Wei, C.; Huang, Y.; Yan, J.; Chen, X.; Zhang, X. Ceram. Int. 2016, 42, 15694. |
[28] | Yan, J.; Fan, Z.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Adv. Funct. Mater. 2012, 22, 2632. |
[29] | Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Nat. Commun. 2019, 10, 5106. |
[30] | Zhang, R.; Xu, L.; Wu, Z.; Wang, L.; Zhang, L.; Tang, Y.; Xu, L.; Xie, A.; Chen, Y.; Zhang, H.; Wan, P. Chem. Eng. J. 2022, 436, 134931. |
/
〈 |
|
〉 |