综述

功能化医用聚氨酯弹性体制备及生物医用研究进展

  • 张桢焱 ,
  • 刘琳 ,
  • 许东华 ,
  • 张若愚 ,
  • 石恒冲 ,
  • 栾世方 ,
  • 殷敬华
展开
  • a 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
    b 中科院宁波材料所所属慈溪生物医学工程研究所 医用植介入材料浙江省工程研究中心 宁波 315300
    c 中国科学技术大学 应用化学与工程学院 合肥 230026

张桢焱, 在读博士生. 2016年, 2019年分别获得北京化工大学工学学士和工学硕士学位. 2021年进入中国科学院长春应用化学研究所攻读博士学位. 主要研究方向为功能化聚氨酯合成与医用抗菌涂层构建.

刘琳, 中国科学院长春应用化学研究所博士. 2021年于中国科学院长春应化所获理学博士学位, 2016年于吉林大学获理学学士学位. 主要研究方向为医用高分子材料表面功能化改性.

张若愚, 中国科学院宁波材料技术与工程研究所研究员, 博士生导师. 2008年在中科院化学所获理学博士学位, 入选中科院青年创新促进会会员、宁波市领军拔尖人才. 主要研究方向为聚氨酯功能材料、聚氨酯介入类医疗器械.

石恒冲, 中国科学院长春应用化学研究所研究员, 博士生导师. 2011年在中科院长春应化所获理学博士学位, 入选中科院青年创新促进会会员、优秀会员和“香江学者”计划. 主要研究方向为医用聚氨酯功能化及高性能化、医用高分子材料表界面.

栾世方, 中国科学院长春应用化学研究所研究员, 博士生导师. 2006年在中科院长春应化所获理学博士学位. 国家重点研发计划首席科学家, 兼任中国生物材料学会常务理事等. 主要研究方向为医用高分子材料及器械.

殷敬华, 中国科学院长春应用化学研究所研究员, 博士生导师. 作为第一完成人, 获国家科技进步二等奖、国家技术发明二等奖等. 主要研究方向为医用高分子材料及器械.

庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-28

  网络出版日期: 2022-10-14

基金资助

国家自然科学基金(51973221); 国家自然科学基金(51773218); 国家重点研发计划(2020YFC1106900); 工信部生物医用材料生产示范平台(TC190H3ZV/1); 中科院威高计划、宁波市重大科技攻关(2020Z086); 中科院威高计划、宁波市重大科技攻关(2021Z070); 山东省重大科技创新工程(2019JZZY011105)

Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers

  • Zhenyan Zhang ,
  • Lin Liu ,
  • Donghua Xu ,
  • Ruoyu Zhang ,
  • Hengchong Shi ,
  • Shifang Luan ,
  • Jinghua Yin
Expand
  • a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
    b Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
    c College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
These authors contributed equally to this work

Received date: 2021-12-28

  Online published: 2022-10-14

Supported by

National Natural Science Foundation of China(51973221); National Natural Science Foundation of China(51773218); National Key Research and Development Program of China(2020YFC1106900); Production Demonstration Platform for Biomedical Materials of Ministry of Industry and Information Technology of China(TC190H3ZV/1); Chinese Academy of Sciences-Wego Group Hightech Research & Development Program, Ningbo Technological Innovation 2025(2020Z086); Chinese Academy of Sciences-Wego Group Hightech Research & Development Program, Ningbo Technological Innovation 2025(2021Z070); Major Science and Technology Innovation Project of Shandong Province(2019JZZY011105)

摘要

热塑性聚氨酯(TPU)弹性体因其良好的可加工性、机械性能和生物安全性而被广泛应用于生物医学领域. 绝大部分TPU都由大分子二元醇软段以及异氰酸酯和小分子扩链剂形成的硬段组成, 这两者分别提供基体的弹性与链网络的框架刚性. 小分子扩链剂二元醇/胺和二异氰酸酯的结构设计是构建功能化TPU的主要途径. 研究者根据特定临床应用场景和使用需求, 设计和制备相应的功能化单体, 并开发出相应的医用TPU. 本综述首先介绍了大分子二元醇、二异氰酸酯以及扩链剂的种类以及各自的特点, 对其特有的微相分离结构做了介绍, 并明晰了化学/物理结构与最终性能的关系. 随后, 综述了国内外TPU在生物医学领域的研究进展和应用, 重点阐述了医用TPU在抗菌、抗凝血、耐水解耐氧化、自愈性以及可降解等方面的发展情况. 最后, 通过总结和分析医用TPU及其器械评价的相关标准, 提出了产业化应用的关键问题, 并展望了医用TPU未来的发展方向.

本文引用格式

张桢焱 , 刘琳 , 许东华 , 张若愚 , 石恒冲 , 栾世方 , 殷敬华 . 功能化医用聚氨酯弹性体制备及生物医用研究进展[J]. 化学学报, 2022 , 80(10) : 1436 -1447 . DOI: 10.6023/A21120593

Abstract

Thermoplastic polyurethane (TPU) elastomer is widely used in biomedical field because of its good processability, mechanical property and biocompatibility. Most TPUs are composed of macromolecular diols as soft segments, diisocyanate and chain extenders as hard segments, which provide the elasticity of the matrix and the framework rigidity of the chain network, respectively. The structural design of chain extender diol/ diamine and diisocyanate is the main method to construct functional TPUs. Researchers designed and prepared the functional monomers according to the specific clinical scene or usage requirements, and developed the corresponding medical TPUs. In this paper, the types and characteristics of macromolecular diols, diisocyanate and chain extenders are introduced. Their unique microphase separation structures are analyzed, and the relationship between the chemical/physical structure and the final performance is discussed. Then, the research progress and advanced applications of TPU in biomedicine at home and abroad are summarized. The applications of TPU as antibacterial, anticoagulant, hydrolytic and oxidation resistant, self-healing and degradable materials are emphasized. Finally, by summarizing and analyzing various standards of biomedical TPU and its device, the key problems of industrial application are put forward, and the future development direction of TPU is prospected.

参考文献

[1]
(a) Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Drug. Des. Devel. Ther. 2018, 12, 3117.
[1]
(b) Lin, X. Q.; Chen, W. S.; Zhang, Q. Q. Chem. Ind. Eng. Prog. 2020, 39, 212. (in Chinese)
[1]
(林晓琪, 陈维胜, 张芹芹, 化工进展, 2020, 39, 212).
[2]
Wang, W.; Wang, C. In The Design and Manufacture of Medical Devices, Eds.: Davim, J. P., Woodhead Publishing, Cambridge, United Kingdom, 2012, p. 115.
[3]
Lee, S. Y.; Wu, S. C.; Chen, H.; Tsai, L. L.; Tzeng, J. J.; Lin, C. H.; Lin, Y. M. Biomed. Res. Int. 2018, 3240571.
[4]
Jenney, C.; Millson, P.; Grainger, D. W.; Grubbs, R.; Gunatillake, P.; McCarthy, S. J.; Runt, J.; Beith, J. Adv. Nano. Res. 2020, 1, 2000032.
[5]
Joo, Y. S.; Cha, J. R.; Gong, M. S. Mater. Sci. Eng. C. Mater. Biol. Appl. 2018, 91, 426.
[6]
Naureen, B.; Haseeb, A.; Basirun, W. J.; Muhamad, F. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 118, 111228.
[7]
Zdrahala, R. J.; Zdrahala, I. J. J. Biomater. Appl. 1999, 14, 67.
[8]
Wendels, S.; Averous, L. Bioact. Mater. 2021, 6, 1083.
[9]
Ou, W.; Qiu, H.; Chen, Z.; Xu, K. Biomaterials 2011, 32, 31787.
[10]
Lyman, D. J.; Knutson, K.; McNeil, B.; Shibatani, K. Transactions of the American Society of Artificial Internal Organs 1975, 21, 49.
[11]
Takahara, A.; Tashita, J. I.; Kajiyama, T.; Takayanagi, M.; MacKnight, W. J. Polymer 1985, 26, 987.
[12]
Lyu, S.; Untereker, D. Int. J. Mol. Sci. 2009, 10, 4033.
[13]
Santerre, J. P.; Woodhouse, K.; Laroche, G.; Labow, R. S. Biomaterials 2005, 26, 7457.
[14]
Špírková, M.; Serkis, M.; Poręba, R.; Machová, L. K.; Hodan, J.; Kredatusová, J.; Kubies, D.; Zhigunov, A. Polym. Degrad. Stab. 2016, 125, 115.
[15]
Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Biotechnol. Adv. 2020, 39, 107457.
[16]
Lopez-Lopez, G.; Pascual, A.; Perea, E. J. J. Med. Microbiol. 1991, 34, 349.
[17]
Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Angew. Chem. Int. Ed. 2013, 52, 9422.
[18]
Das, A.; Mahanwar, P. Adv. Ind. Eng. Polym. Res. 2020, 3, 93.
[19]
Chattopadhyay, D. K.; Raju, K. V. S. N. Prog. Polym. Sci. 2007, 32, 352.
[20]
Nasar, A. S.; Subramani, S.; Radhakrishnan, G. Polym. Int. 1999, 48, 614.
[21]
Brown, D. W.; Lowry, R. E.; Smith, L. E. Macromolecules 1980, 13, 248.
[22]
Prisacariu, C. Polyurethane Elastomers: from morphology to mechanical aspects, Springer Science & Business Media, Berlin, Germany, 2011, p. 14.
[23]
Que, Y. H.; Shi, Y.; Liu, L. Z.; Wang, Y. X.; Wang, C. C.; Zhang, H. C.; Han, X. Y. Polymers (Basel) 2021, 13, 3475.
[24]
Joseph, J.; Patel, R. M.; Wenham, A.; Smith, J. R. Trans. IMF 2018, 96, 121.
[25]
Luo, N.; Wang, D. N.; Ying, S. K.; Qian, Y. X.; Zhu, Z. Q. Chem. J. Chinese U. 1994, 07, 1076. (in Chinese)
[25]
(罗宁, 王得宁, 应圣康, 钱义祥, 朱支蔷, 高等学校化学学报, 1994, 07, 1076.)
[26]
Hook, A. L.; Chang, C. Y.; Yang, J.; Luckett, J.; Cockayne, A.; Atkinson, S.; Mei, Y.; Bayston, R.; Irvine, D. J.; Langer, R.; Anderson, D. G.; Williams, P.; Davies, M. C.; Alexander, M. R. Nat. Biotechnol. 2012, 30, 868.
[27]
Palencia, M.; Lerma, T. A.; Arrieta, Á. A. Mater. Today Commun. 2020, 22, 100708.
[28]
Zhang, Y.; He, W.; Li, J.; Wang, K.; Li, J.; Tan, H.; Fu, Q. Mater. Chem. Front. 2017, 1, 361.
[29]
Song, Y.; Gao, Y.; Wan, X.; Luo, F.; Li, J.; Tan, H.; Fu, Q. RSC Adv. 2016, 6, 17336.
[30]
(a) Qian, L.; Guan, Y.; He, B.; Xiao, H. Polymer, 2008, 49, 2471.
[30]
(b) Peng, K. M.; Ding, W.; Tu, W. P.; Hu, J. Q.; Liu, C.; Yang, J. Acta Chim. Sinica 2016, 74, 713. (in Chinese)
[30]
(彭开美, 丁伟, 涂伟萍, 胡剑青, Liu Chao, Yang Jian, 化学学报, 2016, 74, 713).
[31]
Mohammadi, A.; Doctorsafaei, A. H.; Burujeny, S. B.; Rudbari, H. A.; Kordestani, N.; Najafabadi, S. A. A. Chem. Eng. J. 2020, 381, 122776.
[32]
Hsu, S. H.; Tseng, H. J.; Lin, Y. C. Biomaterials 2010, 31, 6796.
[33]
Zhang, X.; Zhu, M.; Wang, W.; Yu, D. Prog. Org. Coat. 2018, 120, 10.
[34]
Mankoci, S.; Kaiser, R. L.; Sahai, N.; Barton, H. A.; Joy, A. ACS Biomater. Sci. Eng. 2017, 3, 2588.
[35]
Mankoci, S.; Ewing, J.; Dalai, P.; Sahai, N.; Barton, H. A.; Joy, A. Biomacromolecules 2019, 20, 4096.
[36]
Wang, C. H.; Hou, G. G.; Du, Z. Z.; Cong, W.; Sun, J. F.; Xu, Y. Y.; Liu, W. S. Polym. J. 2015, 48, 259.
[37]
Yu, H.; Liu, L.; Yang, H.; Zhou, R.; Che, C.; Li, X.; Li, C.; Luan, S. F.; Yin, J. H.; Shi, H. C. ACS Appl. Mater. Interfaces 2018, 10, 39257.
[38]
Yu, H.; Liu, L.; Li, X.; Zhou, R.; Yan, S.; Li, C.; Luan, S.; Yin, J.; Shi, H. Chem. Eng. J. 2019, 360, 1030.
[39]
Liu, L.; Shi, H.; Yu, H.; Zhou, R.; Yin, J.; Luan, S. Biomater. Sci. 2019, 7, 5035.
[40]
Wang, C.; Mu, C.; Lin, W.; Xiao, H. Adv. Colloid Interface Sci. 2020, 283, 102235.
[41]
Xing, C. M.; Meng, F. N.; Quan, M.; Ding, K.; Dang, Y.; Gong, Y. K. Acta Biomater. 2017, 59, 129.
[42]
Gao, Q.; Li, X.; Yu, W.; Jia, F.; Yao, T.; Jin, Q.; Ji, J. ACS Appl. Mater. Interfaces 2020, 12, 2999.
[43]
Chae, K.; Jang, W. Y.; Park, K.; Lee, J.; Kim, H.; Lee, K.; Lee, C. K.; Lee, Y.; Lee, S. H.; Seo, J. Sci. Adv. 2020, 6, eabb0025.
[44]
Jiang, S.; Cao, Z. Adv. Mater. 2010, 22, 920.
[45]
Mi, L.; Jiang, S. Angew. Chem. Int. Ed. 2014, 53, 1746.
[46]
Cheng, G.; Xue, H.; Zhang, Z.; Chen, S.; Jiang, S. Angew. Chem. Int. Ed. 2008, 47, 8831.
[47]
Wang, C.; Ma, C.; Mu, C.; Lin, W. RSC Adv. 2017, 7, 27522.
[48]
Ye, S. H.; Hong, Y.; Sakaguchi, H.; Shankarraman, V.; Luketich, S. K.; D'Amore, A.; Wagner, W. R. ACS Appl. Mater. Interfaces 2014, 6, 22796.
[49]
Wang, C.; Ma, C.; Mu, C.; Lin, W. Langmuir 2014, 30, 12860.
[50]
Nikam, S. P.; Nettleton, P.; Chen, K.; Hsu, Y. H.; Becker, M. L. Biomacromolecules 2020, 21, 2714.
[51]
Wen, J.; Sun, Z.; Fan, H.; Chen, Y.; Yan, J. Prog. Org. Coat. 2019, 131, 291.
[52]
Qiao, Z.; Xu, D.; Yao, Y.; Song, S.; Yin, M.; Luo, J. Polym. Int. 2019, 68, 1361.
[53]
(a) Biran, R.; Pond, D. Adv. Drug. Deliv. Rev. 2017, 112, 12.
[53]
(b) Shi, H. C.; Che, C. Y.; Luan, S. F.; Yin, J. H. Journal of Functional Polymers, 2020, 33, 141. (in Chinese)
[53]
(石恒冲, 车超越, 栾世方, 殷敬华, 功能高分子学报, 2020, 33, 141).
[54]
Sukavaneshvar, S. Adv. Drug. Deliv. Rev. 2017, 112, 24.
[55]
Badv, M.; Bayat, F.; Weitz, J. I.; Didar, T. F. Biomaterials 2020, 258, 120291.
[56]
He, M.; Gao, K.; Zhou, L.; Jiao, Z.; Wu, M.; Cao, J.; You, X.; Cai, Z.; Su, Y.; Jiang, Z. Acta Biomater. 2016, 40, 142.
[57]
Zhou, X. F.; Jiang, X. L.; Gu, N. J. Chem. Ind. Eng. (China) 2009, 60, 1341. (in Chinese)
[57]
(周雪峰, 江筱莉, 顾宁, 化工学报, 2009, 60, 1341.)
[58]
Yan, S. P.; Zhang, C.; Lv, H. J. Funct. Polym. 2020, 33, 1. (in Chinese)
[58]
(闫树鹏, 张冲, 吕华, 功能高分子学报, 2020, 33, 1.)
[59]
Ye, S.; Hong, Y.; Sakaguchi, H.; Shankarraman, V.; Luketich, S. K.; Amore, A. D.; Wagner, W. R. ACS Appl. Mater. Interfaces 2014, 6, 22796.
[60]
Smith, R. S.; Zhang, Z.; Bouchard, M.; Li, J.; Heather, S. L.; Gregory, R. B.; David, L. L.; Weaver, D.; Laurence, A. R.; Coury, A.; Biggerstaff, J.; Sukavaneshvar, S.; Langer, R.; Loose, C. Sci. Transl. Med. 2012, 4, 153ra132.
[61]
Holmer, E.; Kurachi, K.; Söderström, G. Biochem. J. 1981, 193, 395.
[62]
Bourin, M. C.; Lindahl, U. Biochem. J. 1993, 289, 313.
[63]
Nahain, A. A.; Ignjatovic, V.; Monagle, P.; Tsanaktsidis, J.; Ferro, V. Med. Res. Rev. 2018, 38, 1582.
[64]
Yan, Y.; Wang, X. H.; Yin, D.; Zhang, R. J. Bioact. Compat. Polym. 2007, 22, 323.
[65]
Zia, F.; Zia, K. M.; Zuber, M.; Tabasum, S.; Rehman, S. Int. J. Biol. Macromol. 2016, 84, 101.
[66]
Lu, Y.; Shen, L.; Gong, F.; Cui, J.; Rao, J.; Chen, J.; Yang, W. Polym. Int. 2012, 61, 1433.
[67]
Schollenberger, C. S.; Stewart, F. D. Die Angew. Makromol. Chem. 1973, 29, 413.
[68]
Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J. M.; Laycock, B. Prog. Polym. Sci. 2019, 90, 211.
[69]
Chaffin, K. A.; Chen, X.; McNamara, L.; Bates, F. S.; Hillmyer, M. A. Macromolecules 2014, 47, 5220.
[70]
Loh, X. J.; Goh, S. H.; Li, J. Biomaterials 2007, 28, 4113.
[71]
Pretsch, T.; Jakob, I.; Müller, W. Polym. Degrad. Stab. 2009, 94, 61.
[72]
Jewrajka, S. K.; Yilgor, E.; Yilgor, I.; Kennedy, J. P. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 38.
[73]
Gunatillake, P. A.; Meijs, G. F.; Rizzardo, E.; Chatelier, R. C.; McCarthy, S. J.; Brandwood, A.; Schindhelm, K. J. Appl. Polym. Sci. 1992, 46, 319.
[74]
Jayabalan, M.; Lizymol, P. P.; Thomas, V. Polym. Int. 2000, 49, 88.
[75]
Wiggins, M. J.; Wilkoff, B.; Anderson, J. M.; Hiltner, A. J. Biomed. Mater. Res. 2001, 58, 302.
[76]
Christenson, E. M.; Anderson, J. M.; Hiltner, A. J. Biomed. Mater. Res., Part A 2004, 70A, 245.
[77]
Zhao, Q.; Topham, N.; Anderson, J. M. Hiltner, A.; Lodoen, G.; Payet, C. R. J. Biomed. Mater. Res. 1991, 25, 177.
[78]
Cozzens, D.; Ojha, U.; Kulkarni, P.; Faust, R.; Desai, S. J. Biomed. Mater. Res. Part A 2010, 95A, 774.
[79]
Schubert, M. A.; Wiggins, M. J.; Anderson, J. M.; Hiltner, A. J. Biomed. Mater. Res. 1997, 34, 493.
[80]
Hornat, C. C.; Urban, M. W. Prog. Polym. Sci. 2020, 102, 101208.
[81]
Yao, Y.; Xu, Z.; Liu, B.; Xiao, M.; Yang, J.; Liu, W. Adv. Funct. Mater. 2020, 31, 2006944.
[82]
Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Angew. Chem. Int. Ed. 2018, 57, 13838.
[83]
Zhang, L.; You, Z. Chin. J. Polym. Sci. 2021, 39, 1281.
[84]
Lou, J.; Liu, Z.; Yang, L.; Guo, Y.; Lei, D.; You, Z. Adv. Funct. Mater. 2021, 31, 2008328.
[85]
Rekondo, A.; Martin, R.; Luzuriaga, A. R. D.; Cabañero, G.; Grande, H. J.; Odriozola, I. Mater. Horiz. 2014, 1, 237.
[86]
Zhang, C.; Liang, H.; Liang, D.; Lin, Z.; Chen, Q.; Feng, P.; Wang, Q. Angew. Chem. Int. Ed. 2021, 60, 4289.
[87]
Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; Li, C. H.; Yan, X.; Liu, C.; Tok, J. B.; Jia, X.; Bao, Z. Adv. Mater. 2018, 30, 1801435.
[88]
Ying, W. B.; Wang, G.; Kong, Z.; Yao, C. K.; Wang, Y.; Hu, H.; Li, F.; Chen, C.; Tian, Y.; Zhang, J.; Zhang, R.; Zhu, J. Adv. Funct. Mater. 2021, 31, 2009869.
[89]
Xu, C.; Huang, Y.; Wu, J.; Tang, L.; Hong, Y. ACS Appl. Mater. Interfaces 2015, 7, 20377.
[90]
Liu, L.; Wei, Z. Y.; Gao, J.; Wang, P.; Qi, M. Chin. J. Tissue Eng. Res. 2008, 12, 2735. (in Chinese)
[90]
(刘炼, 魏志勇, 高军, 王沛, 齐民, 中国组织工程与临床康复, 2008, 12, 2735.)
[91]
Jiang, C.; Zhang, L.; Yang, Q.; Huang, S.; Shi, H.; Long, Q.; Qian, B.; Liu, Z.; Guan, Q.; Liu, M.; Yang, R.; Zhao, Q.; You, Z.; Ye, X. Nat. Commun. 2021, 12, 4395.
[92]
Li, F.; Xu, Z.; Hu, H.; Kong, Z.; Chen, C.; Tian, Y.; Zhang, W.; Ying, W. B.; Zhang, R.; Zhu, J. Chem. Eng. J. 2021, 410, 128363.
文章导航

/