动态化学与材料和非晶物理新关联——金属有机框架玻璃的挑战、进展与新机遇
收稿日期: 2022-12-23
网络出版日期: 2023-02-16
基金资助
国家自然科学基金(22171075); 广西八桂英才项目(2019AC26001); 霍英东教育基金会高等院校青年教师基金(171110); 上海市科学技术委员会项目(22QC1401500); 上海市科学技术委员会项目(21DZ2260400)
Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics
Received date: 2022-12-23
Online published: 2023-02-16
Supported by
National Natural Science Foundation of China(22171075); BaGui Talent Program of Guangxi Province(2019AC26001); Young Teachers Grants from the Fok Ying-Tong Education Foundation(171110); Science and Technology Commission of Shanghai Municipality(22QC1401500); Science and Technology Commission of Shanghai Municipality(21DZ2260400)
金属有机框架(简称MOF)玻璃为传统玻璃世界和非晶物理研究带来崭新成员, 被视为下一代多孔化学及新型MOF衍生功能材料关键发展方向. 作为金属离子或簇核与有机配体通过配位键连接形成的多孔网络, 绝大多数MOF还未达到高温熔融态就不可避免地发生热分解, 很难通过传统的熔融-淬冷法制备玻璃. 面对相关挑战, 本综述系统梳理MOF玻璃发展历程及最新进展, 提出基于动态化学串联扰动的全新策略用于普适化制备MOF玻璃. 基于新的玻璃化方法, 发现更多MOF玻璃、阐明结构转变本质并拓展新颖性质功能是从动态化学到材料和非晶物理的重大学科交叉前沿. 相关研究孕育系列新机遇, 包括从框架/动态化学的设计和调控到MOF玻璃可控制备, 从晶态MOF本征性质到其玻璃态的各种潜在性能及新功能应用, 以及从MOF多物相多层次结构转换出发更好理解玻璃本质.
殷政 , 赵英博 , 曾明华 . 动态化学与材料和非晶物理新关联——金属有机框架玻璃的挑战、进展与新机遇[J]. 化学学报, 2023 , 81(3) : 246 -252 . DOI: 10.6023/A22120508
The emerging metal-organic framework (MOF) glass, that is brand-new comer to the traditional glass and noncrystalline physics world, was viewed as the Holy Grail of future porous chemistry and the key direction of MOF derived functional materials. The known examples of MOF glass are extremely scarce, prepared mainly through the traditional melt-quenching method. As porous framework constructed from metal ions/clusters and organic linkers through coordinative bonds, the majority of MOFs can not reach high-temperature melt state, which prevents MOF glass formation. Facing these challenges, here we summarized the development history and latest advance of MOF glass. A new strategy of sequential perturbation based on dynamic chemistry was presented to widely prepare MOF glass. How to discover more MOF glasses, expand their properties and functions, and clarify their nature, is the new interdisciplinary frontier from dynamic chemistry to material science and noncrystalline physics. This topic also provides a range of new research opportunities, including the design and regulation of MOF glass based on reticular and dynamic chemistry, exploring new functions of MOF glass beyond its crystalline counterpart, and effectively responding to the scientific challenges in noncrystalline physics including the glass nature, based on the solid-solid structure transformation and relevance between crystalline and glassy MOFs.
| [1] | Special issue for Science's 125th anniversary. Science 2005, 309, 78. |
| [2] | Wang W. H. Prog. Phys. 2013, 33, 177. (in Chinese) |
| [2] | (汪卫华, 物理学进展, 2013, 33, 177.) |
| [3] | Zhang Q. Y.; Wang W. C.; Jiang Z. H. Chin. Sci. Bull. 2016, 13, 1407. (in Chinese) |
| [3] | (张勤远, 王伟超, 姜中宏, 科学通报, 2016, 13, 1407.) |
| [4] | Debenedetti P. G.; Stillinger F. H. Nature 2001, 410, 259. |
| [5] | Li M. X.; Liu Y. H.; Wang W. H.; Zhao S. F.; Lu Z.; Hirata A.; Wen P.; Bai H. Y.; Chen M.; Schroers J. Nature 2019, 569, 99. |
| [6] | Zachariasen W. H. J. Am. Chem. Soc. 1932, 54, 3841. |
| [7] | Flory P. J. J. Chem. Phys. 1949, 17, 303. |
| [8] | Bernal J. D. Nature 1960, 185, 68. |
| [9] | Chen X. M.; Zhang J. P. Metal-Organic Framework Materials, Chemical Industry Press, Beijing, 2017. (in Chinese) |
| [9] | (陈小明, 张杰鹏, 金属-有机框架材料, 化学工业出版社, 北京, 2017.) |
| [10] | Furukawa H.; Cordova K. E.; O'Keeffe M.; Yaghi O. M. Science 2013, 341, 974. |
| [11] | Kitagawa S. Acc. Chem. Res. 2017, 50, 514. |
| [12] | Bennett T. D.; Goodwin A. L.; Dove M. T.; Keen D. A.; Tucker M. G.; Barney E. R.; Soper A. K.; Bithell E. G.; Tan J. C.; Cheetham A. K. Phys. Rev. Lett. 2010, 104, 115503. |
| [13] | Bennett T. D.; Yue Y.; Li P.; Qiao A.; Tao H.; Greaves N. G.; Richards T.; Lampronti G. I.; Redfern S. A. T.; Blanc F.; Farha O. K.; Hupp J. T.; Cheetharm A. K.; Keen D. A. J. Am. Chem. Soc. 2016, 138, 3484. |
| [14] | Gaillac R.; Pullumbi P.; Beyer K. A.; Chapman K. W.; Keen D. A.; Bennett T. D.; Coudert F. X. Nat. Mater. 2017, 16, 1149. |
| [15] | Widmer R. N.; Lampronti G. I.; Anzellini S.; Gaillac R.; Farsang S.; Zhou C.; Belenguer A. M.; Wilson C. W.; Palmer H.; Kleppe A. K.; Wharmby M. T.; Yu X.; Cohen S. M.; Telfer S. G.; Redfern S. A. T.; Coudert F. X.; MacLeod S. G.; Bennett T. D. Nat. Mater. 2019, 18, 370. |
| [16] | Longley L.; Calahoo C.; Limbach R.; Xia Y.; Tuffnell J. M.; Sapnik A. F.; Thorne M. F.; Keeble D. S.; Keen D. A.; Wondraczek L.; Bennett T. D. Nat. Commun. 2020, 11, 5800. |
| [17] | Shaw B. K.; Hughes A. R.; Ducamp M.; Moss S.; Debnath A.; Sapnik A. F.; Thorne M. F.; McHugh L. N.; Pugliese A.; Keeble D. S.; Chater P.; Bermudez-Garcia J. M.; Moya X.; Saha S. K.; Keen D. A.; Coudert F.-X.; Blanc F.; Bennett T. D. Nat. Chem. 2021, 13, 778. |
| [18] | Bennett T. D.; Tan J. C.; Yue Y. Z.; Baxter E.; Ducati C.; Terrill N. J.; Yeung H. H. M.; Zhou Z. F.; Chen W. L.; Henke S.; Cheetham A. K.; Greaves G. N. Nat. Commun. 2015, 6, 8079. |
| [19] | Greaves G. N. In Springer Handbook of Glass, Eds.: Musgraves, J. D.; Hu, J.; Calvez, L., Springer International Publishing, Cham, 2019, pp. 719-770. |
| [20] | Qiao A.; Bennett T. D.; Tao H. Z.; Krajnc A.; Mali G.; Doherty C. M.; Thornton A. W.; Mauro J. C.; Greaves G. N.; Yue Y. Z. Sci. Adv. 2018, 4, 6827. |
| [21] | Zheng Q.; Zhang Y.; Montazerian M.; Gulbiten O.; Mauro J. C.; Zanotto E. D.; Yue Y. Chem. Rev. 2019, 119, 7848. |
| [22] | Madsen R. S. K.; Qiao A.; Sen J.; Hung I.; Chen K.; Gan Z.; Sen S.; Yue Y. Science 2020, 367, 1473. |
| [23] | Yan J.; Gao C.; Qi S.; Jiang Z.; Jensen L. R.; Zhan H.; Zhang Y.; Yue Y. Nano Energy 2022, 103, 107779. |
| [24] | Gao C.; Jiang Z.; Qi S.; Wang P.; Jensen L. R.; Johansen M.; Christensen C. K.; Zhang Y.; Ravnsbaek D. B.; Yue Y. Adv. Mater. 2022, 34, 2110048. |
| [25] | Horike S.; Umeyama D.; Inukai M.; Itakura T.; Kitagawa S. J. Am. Chem. Soc. 2012, 134, 7612. |
| [26] | Umeyama D.; Horike S.; Inukai M.; Itakura T.; Kitagawa S. J. Am. Chem. Soc. 2015, 137, 864. |
| [27] | Ogawa T.; Takahashi K.; Kurihara T.; Nagarkar S. S.; Ohara K.; Nishiyama Y.; Horike S. Chem. Mater. 2022, 34, 5832. |
| [28] | Zhao Y. B.; Lee S. Y.; Becknell N.; Yaghi O. M.; Angell C. A. J. Am. Chem. Soc. 2016, 138, 10818. |
| [29] | Hou J.; Chen P.; Shukla A.; Krajnc A.; Wang T.; Li X.; Doasa R.; Tizei L. H. G.; Chan B.; Johnstone D. N.; Lin R.; Schulli T. U.; Martens I.; Appadoo D.; Ari M. S.; Wang Z.; Wei T.; Lo S.-C.; Lu M.; Li S.; Namdas E. B.; Mali G.; Cheetham A. K.; Collins S. M.; Chen V.; Wang L.; Bennett T. D. Science 2021, 374, 621. |
| [30] | Lin R.; Li X.; Krajnc A.; Li Z.; Li M.; Wang W.; Zhuang L.; Smart S.; Zhu Z.; Appadoo D.; Harmer J. R.; Wang Z.; Buzanich A. G.; Beyer S.; Wang L.; Mali G.; Bennett T. D.; Chen V.; Hou J. Angew. Chem. Int. Ed. 2022, 61, e202112880. |
| [31] | Ali M. A.; Ren J.; Zhao T.; Liu X.; Hua Y.; Yue Y.; Qiu J. ACS Omega 2019, 4, 12081. |
| [32] | Ali M. A.; Liu X.; Li Y.; Ren J.; Qiu J. Inorg. Chem. 2020, 59, 8380. |
| [33] | Sun K.; Tan D.; Fang X.; Xia X.; Lin D.; Song J.; Lin Y.; Liu Z.; Gu M.; Yue Y.; Qiu J. Science 2022, 375, 307. |
| [34] | Yin Z.; Zhang Y.-B.; Yu H.-B.; Zeng M.-H. Sci. Bull. 2020, 65, 1432. |
| [35] | Yin Z.; Zhao Y.; Wan S.; Yang J.; Shi Z.; Peng S.-X.; Chen M.-Z.; Xie T.-Y.; Zeng T.-W.; Yamamuro O.; Nirei M.; Akiba H.; Zhang Y.-B.; Yu H.-B.; Zeng M.-H. J. Am. Chem. Soc. 2022, 144, 13021. |
| [36] | Peng S.-X.; Yin Z.; Zhang T.; Yang Q.; Yu H.-B.; Zeng M.-H. J. Chem. Phys. 2022, 157, 104501. |
| [37] | Ma N.; Horike S. Chem. Rev. 2022, 122, 4163. |
| [38] | Nozari V.; Calahoo C.; Tuffnell J. M.; Keen D. A.; Bennett T. D.; Wondraczek L. Nat. Commun. 2021, 12, 5703. |
| [39] | Thorne M. F.; Gomez M. L. R.; Bumstead A. M.; Li S.; Bennett T. D. Green Chem. 2020, 22, 2505. |
| [40] | Li S.; Limbach R.; Longley L.; Shirzadi A. A.; Walmsley J. C.; Johnstone D. N.; Midgley P. A.; Wondraczek L.; Bennett T. D. J. Am. Chem. Soc. 2019, 141, 1027. |
| [41] | To T.; Sorensen S. S.; Stepniewska M.; Qiao A.; Jensen L. R.; Bauchy M.; Yue Y.; Smedskjaer M. M. Nat. Commun. 2020, 11, 2593. |
| [42] | Widmer R. N.; Bumstead A. M.; Jain M.; Bennett T. D.; Michler J. J. Am. Chem. Soc. 2021, 143, 20717. |
| [43] | Zhou C.; Longley L.; Krajnc A.; Smales G. J.; Qiao A.; Erucar I.; Doherty C. M.; Thornton A. W.; Hill A. J.; Ashling C. W.; Qazvini O. T.; Lee S. J.; Chater P. A.; Terrill N. J.; Smith A. J.; Yue Y.; Mali G.; Keen D. A.; Telfer S. G.; Bennett T. D. Nat. Commun. 2018, 9, 5042. |
| [44] | Frentzel-Beyme L.; Kloss M.; Pallach R.; Salamon S.; Moldenhauer H.; Landers J.; Wende H.; Debus J.; Henke S. J. Mater. Chem. A 2019, 7, 985. |
| [45] | Frentzel-Beyme L.; Kloss M.; Kolodzeiski P.; Pallach R.; Henke S. J. Am. Chem. Soc. 2019, 141, 12362. |
| [46] | Wang Y.; Fin H.; Ma Q.; Mo K.; Mao H.; Feldhoff A.; Cao X.; Li Y.; Pan F.; Jiang Z. Angew. Chem. Int. Ed. 2020, 59, 4365. |
| [47] | Jiang G.; Qu C.; Xu F.; Zhang E.; Lu Q.; Cai X.; Hausdorf S.; Wang H.; Kaskel S. Adv. Funct. Mater. 2021, 31, 2104300. |
| [48] | Zeng M. H.; Feng X. L.; Chen X. M. Dalton Trans. 2004, 2217. |
| [49] | Zeng M. H.; Wang Q. X.; Tan Y. X.; Hu S.; Zhao H. X.; Long L. S.; Kurmoo M. J. Am. Chem. Soc. 2010, 132, 2561. |
| [50] | Yin Z.; Wang Q. X.; Zeng M. H. J. Am. Chem. Soc. 2012, 134, 4857. |
| [51] | Zeng M. H.; Yin Z.; Tan Y. X.; Zhang W. X.; He Y. P.; Kurmoo M. J. Am. Chem. Soc. 2014, 136, 4680. |
| [52] | Yin Z.; Wan S.; Yang J.; Kurmoo M.; Zeng M. H. Coord. Chem. Rev. 2019, 378, 500. |
| [53] | Zeng M.-H.; Tan Y.-X.; He Y.-P.; Yin Z.; Chen Q.; Kurmoo M. Inorg. Chem. 2013, 52, 2353. |
| [54] | Shekhah O.; Liu J.; Fischer R. A.; Woll C. Chem. Soc. Rev. 2011, 40, 1081. |
| [55] | Xu R. R.; Yu J. H.; Yan W. F. Prog. Chem. 2020, 32, 1017. (in Chinese) |
| [55] | (徐如人, 于吉红, 闫文付, 化学进展, 2020, 32, 1017.) |
/
| 〈 |
|
〉 |