研究论文

一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+及其应用研究

  • 梁攀 ,
  • 张宏淑 ,
  • 黄宏升 ,
  • 李飒英 ,
  • 张笑恬 ,
  • 王英 ,
  • 李连庆 ,
  • 刘志宏
展开
  • a 陕西学前师范学院 化学化工学院 西安 710100
    b 陕西师范大学 化学化工学院 西安 710062
    c 贵州理工学院 化学工程学院 贵阳 550003

收稿日期: 2023-01-05

  网络出版日期: 2023-02-22

基金资助

国家自然科学基金(22003035); 国家自然科学基金(21963006); 陕西省教育厅项目(21JK0587)

An Efficient Narrow-band Blue-emitting Phosphor Ba3Y2B6O15:Bi3+ and Its Application

  • Pan Liang ,
  • Hongshu Zhang ,
  • Hongsheng Huang ,
  • Saying Li ,
  • Xiaotian Zhang ,
  • Ying Wang ,
  • Lianqing Li ,
  • Zhihong Liu
Expand
  • a School of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi’an 710100, China
    b School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
    c School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China

Received date: 2023-01-05

  Online published: 2023-02-22

Supported by

National Natural Science Foundation of China(22003035); National Natural Science Foundation of China(21963006); Shaanxi Provincial Education Department Project(21JK0587)

摘要

目前, 高效窄带荧光粉的研发对于白光发光二极管(WLED)向高性能液晶显示器背光源的应用至关重要. 本工作采用高温固相法制备了一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+, 并对其结构和性能进行了表征和计算. 计算表明, Ba3Y2B6O15的带隙较宽, 为4.67 eV, 宽的带隙为高效率荧光粉提供了保障. Ba3Y2B6O15:0.5%Bi3+ (0.5%为摩尔分数)的发射光谱峰值在409 nm, 半峰宽仅为2168 cm−1 (36.2 nm), 属于窄带蓝光发射. Ba3Y2B6O15:0.5%Bi3+的内量子效率高达93.8%, 色纯度也高达98.9%, 其热稳定性能也较好, 在150 ℃时的发光强度是室温发光强度的73.9%, 且几乎没有色漂移. 当Y被Sc部分取代时, Ba3ScxY2-xB6O15:Bi3+(0≤x≤1.6)的发射光谱随着x的增大而发生红移. 最终, 将蓝色荧光粉Ba3Y2B6O15:0.5%Bi3+与商品化的红绿两种荧光粉混合均匀后涂在365 nm的芯片上制成WLED, 在20 mA的电流驱动下, 得到的WLED相关色温为5679 K, 色域可达95.3% NTSC((美国)国家电视标准委员会).

本文引用格式

梁攀 , 张宏淑 , 黄宏升 , 李飒英 , 张笑恬 , 王英 , 李连庆 , 刘志宏 . 一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+及其应用研究[J]. 化学学报, 2023 , 81(4) : 371 -380 . DOI: 10.6023/A23010003

Abstract

At present, the development of efficient (high quantum efficiency and high thermal stability) narrow-band emitting phosphors is a crucial problem in the application of white light emitting diodes (WLED) for high-performance liquid crystal display (LCD) backlights. In this work, an efficient narrow-band blue emitting phosphor Ba3Y2B6O15:Bi3+ was prepared by high temperature solid state method, and its structure and properties were characterized and calculated. By using the density functional theory (DFT), Ba3Y2B6O15 is calculated to be a direct band gap material with a high band gap value of 4.67 eV, which is a necessary condition for achieving high quantum efficiency phosphors. The experiment results show that Ba3Y2B6O15:0.5%Bi3+ has a narrow-band blue-emitting spectrum with a full width at half maximum (FWHM) of 2168 cm−1 (36.2 nm) at 409 nm, which is owing to the 3P11S0 transition of Bi3+ ions. The emission spectra of Ba3Y2B6O15:0.5%Bi3+ can be split into two peaks at 406 and 422 nm, respectively, because there are two kinds of Y ions (Y1 and Y2) in the crystal cell of Ba3Y2B6O15. Under the 365 nm UV radiation, the Ba3Y2B6O15:0.5%Bi3+ exhibits high internal quantum efficiency (IQE=93.8%), and ultra-high color purity (98.9%). The high quantum efficiency and narrow-band emission spectrum are mainly due to the compact and highly symmetric crystal structure of Ba3Y2B6O15 matrix. The photoluminescence (PL) intensity of Ba3Y2B6O15:0.5%Bi3+ remains 73.9% of the initial intensity at 150 ℃, and there is almost no color drift. The thermal quenching activation energy (Ea) of Ba3Y2B6O15:0.5%Bi3+ was calculated to be 0.290 eV by the Arrhenius Equation, which indicates that Ba3Y2B6O15:0.5%Bi3+ has high thermal stability. When Y3+ is partially substituted by Sc3+, the emission spectrum of Ba3ScxY2-xB6O15:Bi3+ (0≤x≤1.6) is redshifted with the increase of x. Finally, the blue phosphor Ba3Y2B6O15:0.5%Bi3+ was mixed with commecial green and red phosphors and then coated them on a 365 nm chip to fabricate a WLED device. Under a driven current of 20 mA, the correlated color temperature of the obtained WLED is 5679 K and the color gamut can reach 95.3% NTSC. Above results indicate that Ba3Y2B6O15:Bi3+ is a promising phosphor for high-performance LCD backlights.

参考文献

[1]
Liang, P.; Lian, W. L.; Liu, Z. H. Chem.-Eur. J. 2021, 27, 13819.
[2]
Liang, P.; Lian, W. L.; Liu, Z. H. Chem. Commun. 2021, 57, 3371.
[3]
Liang, P.; Li, L. Q.; Shen, T.; Lian, W. L; Liu, Z. H. J. Rare Earth. doi,10.1016/j.jre.2022.02.001
[4]
Zhao, M.; Liao, H. X.; Xia, Z. G. J. Chin. Soc. Rare Earth. 2020, 38, 257. (in Chinese)
[4]
(赵鸣, 廖泓旭, 夏志国, 中国稀土学报, 2020, 38, 257).
[5]
Fang, M. H.; Lea?o, J. L.; Liu, R. S. ACS Energy. Lett. 2018, 3, 2573.
[6]
Liu, W.; Song, E.; Cheng, L.; Song, L.; Xie, J.; Li, G.; Zhang, Y.; Wang, Y.; Wang, Y.; Xia, Z.; Chai, Z.; Wang, S. Chem. Mater. 2019, 31, 9684.
[7]
Meijerink, A. Sci. China. Mater. 2019, 62, 146.
[8]
Strobel, P.; Maak, C.; Weiler, V.; Schmidt, P. J.; Schnick, W. Angew. Chem. Int. Ed. 2018, 57, 8739.
[9]
Liao, H.; Zhao, M.; Molokeev, M. S.; Liu, Q.; Xia, Z. Angew. Chem. Int. Ed. 2018, 130, 11902.
[10]
Wendl, S.; Eisenburger, L.; Strobel, P.; Gunther, D.; Wright, J. P.; Schmidt, P. J.; Oeckler, O.; Schnick, W. Chem.-Eur. J. 2020, 26, 7292.
[11]
Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N.; Xie, R. J. Chem. Mater. 2018, 30, 494.
[12]
Zhao, M.; Liao, H.; Ning, L.; Zhang, Q.; Liu, Q.; Xia, Z. Adv. Mater. 2018, 30, 1802489.
[13]
Liao, H.; Zhao, M.; Zhou, Y.; Molokeev, M. S.; Liu, Q.; Zhang, Q.; Xia, Z. Adv. Funct. Mater. 2019, 29, 1901988.
[14]
Zhao, M.; Cao, K.; Liu, M.; Zhang, J.; Chen, R.; Zhang, Q.; Xia, Z. Angew. Chem. Int. Ed. 2020, 59, 12938.
[15]
Takeda, T.; Hirosaki, N.; Funahshi, S.; Xie, R. J. Chem. Mater. 2015, 27, 5892.
[16]
Wang, W.; Yang, H.; Fu, M. Q.; Zhang, X. Y.; Guan, M. Y.; Wei, Y.; Lin, C. C.; Li, G. G. Chem. Eng. J. 2021, 415, 128979.
[17]
Wu, Z.; Li, C.; Zhang, F.; Huang, S.; Wang, F.; Wang, X.; Jiao, H. J. Mater. Chem. C 2022, 10, 7443.
[18]
Fang, M. H.; Tsai, Y. T.; Sheu, H. S.; Lee, J. F.; Liu, R. S. J. Mater. Chem. C 2018, 6, 10174.
[19]
Schmiechen, S.; Strobel, P.; Hecht, C.; Reith, T.; Siegert, M.; Schmidt, P. J.; Huppertz, P.; Wiechert, D.; Schnick, W. Chem. Mater. 2015, 27, 1780.
[20]
Pust, P.; Wochnik, A. S.; Baumann, E.; Schmidt, P. J.; Wiechert, D.; Scheu, C.; Schnick, W. Chem. Mater. 2014, 26, 3544.
[21]
Pust, P.; Weiler, V.; Hecht, C.; Tucks, A.; Wochnik, A. S.; Henβ, A. K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick W. Nat. Mater. 2014, 13, 891.
[22]
Zhou, Y.; Zhang, S.; Wang, X.; Jiao, H. Inorg. Chem. 2019, 58, 4412.
[23]
Hou, Z.; Tang, X.; Luo, X.; Zhou, T.; Zhang, L.; Xie, R. J. J. Mater. Chem. C 2018, 6, 2741.
[24]
Amidani, L.; Korthout, K.; Joos, J. J.; van der Linden, M.; Sijbom, H. F.; Meijerink, A.; Poelman, D.; Smet, P. F.; Glatzel, P. Chem. Mater. 2017, 29, 10122.
[25]
Kang, F.; Zhang, H.; Wondraczek, L.; Yang, X.; Zhang, Y.; Lei, D. Y.; Peng, M. Chem. Mater. 2016, 28, 2692.
[26]
Zhao, D.; Li, Y. N.; Zhang, R. J.; Liu, B. Z.; Yao, Q. X. ACS Sustain. Chem. Eng. 2021, 9, 7569.
[27]
Li, H.; Pang, R.; Luo, Y.; Wu, H.; Zhang, S.; Jiang, L.; Li, D.; Li, C.; Zhang, H. ACS Appl. Electron. Mater. 2019, 1, 229.
[28]
Lou, B. B.; Yin, M. Chin. J. Lumin. 2022, 43, 1446. (in Chinese)
[28]
(楼碧波, 尹民, 发光学报, 2022, 43, 1446).
[29]
Li, H.; Wu, H.; Pang, R.; Liu, G.; Zhang, S.; Jiang, L.; Li, D.; Li, C.; Feng, J.; Zhang, H. J. Mater. Chem. C 2021, 9, 1786.
[30]
Fu, Y. B.; Wang, X.; Peng, M. Y. J. Mater. Chem. C 2020, 8, 6079.
[31]
Wang, X.; Wang, J.; Li, X.; Luo, H.; Peng, M. J. Mater. Chem. C 2019, 7, 11227.
[32]
Han, J.; Pan, F.; Molokeev, M. S.; Dai, J.; Peng, M.; Zhou, W.; Wang, J. ACS Appl. Mater. Inter. 2018, 10, 13660.
[33]
Ye, S.; Liu, H.; Wang, Y. ; Lin, J.; Zhong, K.; Ding, J.; Wu, Q. ACS Sustain. Chem. Eng. 2020, 8, 18187.
[34]
Xiao, Y. Q.; Chen, P.; Zhu, Y. H.; Zhang, N.; Zhuo, N. Z. J. Chin. Soc. Rare. Earth. 2020, 38, 724. (in Chinese)
[34]
(肖勇强, 陈鹏, 朱月华, 张娜, 卓宁泽, 中国稀土学报, 2020, 38, 724).
[35]
Wang, S.; Wu, H.; Fan, Y.; Wang, Q.; Tan, T.; Pang, R.; Zhang, S.; Li, D.; Jiang, L.; Li, C.; Zhang, H. Chem. Eng. J. 2022, 432, 134265.
[36]
Pan, J.; Guo, Z.; Zhu, Z.; Sun, Z.; Zhang, T.; Zhang, J.; Zhang, X. Ceram. Int. 2018, 44, 20732.
[37]
Wu, P. P.; Tong, X. B.; Xu, Y.; Han, J.; Seo, Y. J.; Zhang, X. M. Opt. Mater. 2019, 91, 246.
[38]
Duke, A. C.; Hariyani, S.; Brgoch, J. Chem. Mater. 2018, 30, 2668.
[39]
Annadurai, G.; Li, B.; Devakumar, B.; Guo, H.; Sun, L.; Huang, X. J. Lumin. 2019, 208, 75.
[40]
Zhao, S.; Yao, J.; Zhang, G.; Fu, P.; Wu, Y. Acta. Crystallogr. C 2011, 67, 39.
[41]
Wei, Y.; Li, G. G. Chin. J. Lumin. 2021, 42, 1365. (in Chinese)
[41]
(魏忆, 李国岗, 发光学报, 2021, 42, 1365).
[42]
Smeacetto, F.; Salvo, M.; Ajitdoss, L. C.; Perero, S.; Moskalewicz, T.; Boldrini, S.; Doubova, L.; Ferraris, M. Mater. Lett. 2010, 64, 2450.
[43]
Brik, M. G.; Srivastava, A. M.; Popov, A. I. Opt. Mater. 2022, 127, 112276
[44]
Wang, B.; Lin, H.; Huang, F.; Xu, J.; Chen, H.; Lin, Z. B.; Wang, Y. S. Chem. Mater. 2016, 28, 3515.
[45]
Fu, S. Y.; Zhu, Y. C.; Ma, Y. S.; Yao, Y.; Wang, Z. J.; Suo, H.; Wang, D. W.; Yang, Z. P.; Zhao, J. X.; Li, P. L. Chin. J. Lumin. 2022, 43, 1078. (in Chinese)
[45]
(付素月, 朱烨程, 马颖珊, 姚瑶, 王志军, 索浩, 王大伟, 杨志平, 赵金鑫, 李盼来, 发光学报, 2022, 43, 1078).
[46]
Wei, Y.; Gao, Z.; Yun, X.; Yang, H.; Liu, Y.; Li, G. Chem. Mater. 2020, 32, 8747.
[47]
Lephoto, M. A.; Tshabalala, K. G.; Motloung, S. J.; Mhlongo, G. H.; Ntwaeaborwa, O. M. J. Lumin. 2018, 200, 94.
[48]
Li, X.; Li, P.; Wang, Z.; Liu, S.; Bao, Q.; Meng, X.; Qiu, K.; Li, Y.; Li, Z.; Yang, Z. Chem. Mater. 2017, 29, 8792.
[49]
Lian, M. B.; Ye, Z. C.; Mu, Y. X.; Hu, D. H.; Liu, Y.; Zhang, H. L.; Ji, S. M.; Huo, Y. P. Chin. J. Org. Chem. 2023, 43, 573. (in Chinese)
[49]
(连铭槟, 叶泽聪, 穆英啸, 胡德华, 刘源, 张浩力, 籍少敏, 霍延平, 有机化学, 2023, 43, 573.)
[50]
Zheng, J. H.; Chen, Q. J.; Wu, S. Q.; Guo, Z. Q.; Zhuang, Y. X.; Lu, Y. J.; Li, Y.; Chen, C. J. Mater. Chem. C 2015, 3, 11219.
[51]
Zhang, Y.; Yang, C.; Feng, J.; Wang, N.; Li, Q.; Guo, F. W.; Wang, J.; Xu, D. S. Sci. China Chem. 2021, 51, 967. (in Chinese)
[51]
(张宇, 杨创, 冯静, 王楠, 李琦, 郭枫晚, 王娟, 徐东升, 中国科学:化学, 2021, 51, 967).
[52]
Zhang, J. R.; Huang, D. C.; Huang, C. C.; Liang, S. S.; Zhu, H. M. Acta Chim. Sinica 2022, 80, 453. (in Chinese)
[52]
(张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼, 化学学报, 2022, 80, 453).
[53]
Zhu, J. J.; Luo, L. H.; Du, P.; Xue, J. P. Chin. J. Inorg. Chem. 2022, 38, 244. (in Chinese)
[53]
(朱久军, 罗来慧, 杜鹏, 薛俊鹏, 无机化学学报, 2022, 38, 244).
[54]
Li, Q.; Chen, C.; Shen, B.; Yu, B.; Zhang, Y. J. Lumin. 2021, 237, 118196.
[55]
Zhuo, Y.; Tehrani, A. M.; Oliynyk, A. O.; Duke, A. C.; Brgoch, J. Nat. Commun. 2018, 9, 4377.
[56]
Zhong, J.; Zhao, W.; Zhuo, Y.; Yan, C.; Wen, J.; Brgoch, J. J. Mater. Chem. C 2019, 7, 654.
[57]
Xia, Z.; Molokeev, M. S.; Im, W. B.; Unithrattil, S.; Liu, Q. J. Phys. Chem. C 2015, 119, 9488.
[58]
Perdew, J. P.; Yue, W. Phys. Rev. B 1986, 33, 8800.
[59]
Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
[60]
Langreth, D. C.; Perdew, J. P. Phys. Rev. B 1980, 21, 5469.
[61]
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
[62]
Kresse, G.; Hafne, J. J. Phys.-Condens. Mat. 1994, 6, 8245.
[63]
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
文章导航

/