一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+及其应用研究
收稿日期: 2023-01-05
网络出版日期: 2023-02-22
基金资助
国家自然科学基金(22003035); 国家自然科学基金(21963006); 陕西省教育厅项目(21JK0587)
An Efficient Narrow-band Blue-emitting Phosphor Ba3Y2B6O15:Bi3+ and Its Application
Received date: 2023-01-05
Online published: 2023-02-22
Supported by
National Natural Science Foundation of China(22003035); National Natural Science Foundation of China(21963006); Shaanxi Provincial Education Department Project(21JK0587)
目前, 高效窄带荧光粉的研发对于白光发光二极管(WLED)向高性能液晶显示器背光源的应用至关重要. 本工作采用高温固相法制备了一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+, 并对其结构和性能进行了表征和计算. 计算表明, Ba3Y2B6O15的带隙较宽, 为4.67 eV, 宽的带隙为高效率荧光粉提供了保障. Ba3Y2B6O15:0.5%Bi3+ (0.5%为摩尔分数)的发射光谱峰值在409 nm, 半峰宽仅为2168 cm−1 (36.2 nm), 属于窄带蓝光发射. Ba3Y2B6O15:0.5%Bi3+的内量子效率高达93.8%, 色纯度也高达98.9%, 其热稳定性能也较好, 在150 ℃时的发光强度是室温发光强度的73.9%, 且几乎没有色漂移. 当Y被Sc部分取代时, Ba3ScxY2-xB6O15:Bi3+(0≤x≤1.6)的发射光谱随着x的增大而发生红移. 最终, 将蓝色荧光粉Ba3Y2B6O15:0.5%Bi3+与商品化的红绿两种荧光粉混合均匀后涂在365 nm的芯片上制成WLED, 在20 mA的电流驱动下, 得到的WLED相关色温为5679 K, 色域可达95.3% NTSC((美国)国家电视标准委员会).
关键词: 高效荧光粉; 窄带发射; 蓝色荧光粉; Ba3Y2B6O15:Bi3+
梁攀 , 张宏淑 , 黄宏升 , 李飒英 , 张笑恬 , 王英 , 李连庆 , 刘志宏 . 一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+及其应用研究[J]. 化学学报, 2023 , 81(4) : 371 -380 . DOI: 10.6023/A23010003
At present, the development of efficient (high quantum efficiency and high thermal stability) narrow-band emitting phosphors is a crucial problem in the application of white light emitting diodes (WLED) for high-performance liquid crystal display (LCD) backlights. In this work, an efficient narrow-band blue emitting phosphor Ba3Y2B6O15:Bi3+ was prepared by high temperature solid state method, and its structure and properties were characterized and calculated. By using the density functional theory (DFT), Ba3Y2B6O15 is calculated to be a direct band gap material with a high band gap value of 4.67 eV, which is a necessary condition for achieving high quantum efficiency phosphors. The experiment results show that Ba3Y2B6O15:0.5%Bi3+ has a narrow-band blue-emitting spectrum with a full width at half maximum (FWHM) of 2168 cm−1 (36.2 nm) at 409 nm, which is owing to the 3P1→1S0 transition of Bi3+ ions. The emission spectra of Ba3Y2B6O15:0.5%Bi3+ can be split into two peaks at 406 and 422 nm, respectively, because there are two kinds of Y ions (Y1 and Y2) in the crystal cell of Ba3Y2B6O15. Under the 365 nm UV radiation, the Ba3Y2B6O15:0.5%Bi3+ exhibits high internal quantum efficiency (IQE=93.8%), and ultra-high color purity (98.9%). The high quantum efficiency and narrow-band emission spectrum are mainly due to the compact and highly symmetric crystal structure of Ba3Y2B6O15 matrix. The photoluminescence (PL) intensity of Ba3Y2B6O15:0.5%Bi3+ remains 73.9% of the initial intensity at 150 ℃, and there is almost no color drift. The thermal quenching activation energy (Ea) of Ba3Y2B6O15:0.5%Bi3+ was calculated to be 0.290 eV by the Arrhenius Equation, which indicates that Ba3Y2B6O15:0.5%Bi3+ has high thermal stability. When Y3+ is partially substituted by Sc3+, the emission spectrum of Ba3ScxY2-xB6O15:Bi3+ (0≤x≤1.6) is redshifted with the increase of x. Finally, the blue phosphor Ba3Y2B6O15:0.5%Bi3+ was mixed with commecial green and red phosphors and then coated them on a 365 nm chip to fabricate a WLED device. Under a driven current of 20 mA, the correlated color temperature of the obtained WLED is 5679 K and the color gamut can reach 95.3% NTSC. Above results indicate that Ba3Y2B6O15:Bi3+ is a promising phosphor for high-performance LCD backlights.
[1] | Liang, P.; Lian, W. L.; Liu, Z. H. Chem.-Eur. J. 2021, 27, 13819. |
[2] | Liang, P.; Lian, W. L.; Liu, Z. H. Chem. Commun. 2021, 57, 3371. |
[3] | Liang, P.; Li, L. Q.; Shen, T.; Lian, W. L; Liu, Z. H. J. Rare Earth. doi,10.1016/j.jre.2022.02.001 |
[4] | Zhao, M.; Liao, H. X.; Xia, Z. G. J. Chin. Soc. Rare Earth. 2020, 38, 257. (in Chinese) |
[4] | (赵鸣, 廖泓旭, 夏志国, 中国稀土学报, 2020, 38, 257). |
[5] | Fang, M. H.; Lea?o, J. L.; Liu, R. S. ACS Energy. Lett. 2018, 3, 2573. |
[6] | Liu, W.; Song, E.; Cheng, L.; Song, L.; Xie, J.; Li, G.; Zhang, Y.; Wang, Y.; Wang, Y.; Xia, Z.; Chai, Z.; Wang, S. Chem. Mater. 2019, 31, 9684. |
[7] | Meijerink, A. Sci. China. Mater. 2019, 62, 146. |
[8] | Strobel, P.; Maak, C.; Weiler, V.; Schmidt, P. J.; Schnick, W. Angew. Chem. Int. Ed. 2018, 57, 8739. |
[9] | Liao, H.; Zhao, M.; Molokeev, M. S.; Liu, Q.; Xia, Z. Angew. Chem. Int. Ed. 2018, 130, 11902. |
[10] | Wendl, S.; Eisenburger, L.; Strobel, P.; Gunther, D.; Wright, J. P.; Schmidt, P. J.; Oeckler, O.; Schnick, W. Chem.-Eur. J. 2020, 26, 7292. |
[11] | Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N.; Xie, R. J. Chem. Mater. 2018, 30, 494. |
[12] | Zhao, M.; Liao, H.; Ning, L.; Zhang, Q.; Liu, Q.; Xia, Z. Adv. Mater. 2018, 30, 1802489. |
[13] | Liao, H.; Zhao, M.; Zhou, Y.; Molokeev, M. S.; Liu, Q.; Zhang, Q.; Xia, Z. Adv. Funct. Mater. 2019, 29, 1901988. |
[14] | Zhao, M.; Cao, K.; Liu, M.; Zhang, J.; Chen, R.; Zhang, Q.; Xia, Z. Angew. Chem. Int. Ed. 2020, 59, 12938. |
[15] | Takeda, T.; Hirosaki, N.; Funahshi, S.; Xie, R. J. Chem. Mater. 2015, 27, 5892. |
[16] | Wang, W.; Yang, H.; Fu, M. Q.; Zhang, X. Y.; Guan, M. Y.; Wei, Y.; Lin, C. C.; Li, G. G. Chem. Eng. J. 2021, 415, 128979. |
[17] | Wu, Z.; Li, C.; Zhang, F.; Huang, S.; Wang, F.; Wang, X.; Jiao, H. J. Mater. Chem. C 2022, 10, 7443. |
[18] | Fang, M. H.; Tsai, Y. T.; Sheu, H. S.; Lee, J. F.; Liu, R. S. J. Mater. Chem. C 2018, 6, 10174. |
[19] | Schmiechen, S.; Strobel, P.; Hecht, C.; Reith, T.; Siegert, M.; Schmidt, P. J.; Huppertz, P.; Wiechert, D.; Schnick, W. Chem. Mater. 2015, 27, 1780. |
[20] | Pust, P.; Wochnik, A. S.; Baumann, E.; Schmidt, P. J.; Wiechert, D.; Scheu, C.; Schnick, W. Chem. Mater. 2014, 26, 3544. |
[21] | Pust, P.; Weiler, V.; Hecht, C.; Tucks, A.; Wochnik, A. S.; Henβ, A. K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick W. Nat. Mater. 2014, 13, 891. |
[22] | Zhou, Y.; Zhang, S.; Wang, X.; Jiao, H. Inorg. Chem. 2019, 58, 4412. |
[23] | Hou, Z.; Tang, X.; Luo, X.; Zhou, T.; Zhang, L.; Xie, R. J. J. Mater. Chem. C 2018, 6, 2741. |
[24] | Amidani, L.; Korthout, K.; Joos, J. J.; van der Linden, M.; Sijbom, H. F.; Meijerink, A.; Poelman, D.; Smet, P. F.; Glatzel, P. Chem. Mater. 2017, 29, 10122. |
[25] | Kang, F.; Zhang, H.; Wondraczek, L.; Yang, X.; Zhang, Y.; Lei, D. Y.; Peng, M. Chem. Mater. 2016, 28, 2692. |
[26] | Zhao, D.; Li, Y. N.; Zhang, R. J.; Liu, B. Z.; Yao, Q. X. ACS Sustain. Chem. Eng. 2021, 9, 7569. |
[27] | Li, H.; Pang, R.; Luo, Y.; Wu, H.; Zhang, S.; Jiang, L.; Li, D.; Li, C.; Zhang, H. ACS Appl. Electron. Mater. 2019, 1, 229. |
[28] | Lou, B. B.; Yin, M. Chin. J. Lumin. 2022, 43, 1446. (in Chinese) |
[28] | (楼碧波, 尹民, 发光学报, 2022, 43, 1446). |
[29] | Li, H.; Wu, H.; Pang, R.; Liu, G.; Zhang, S.; Jiang, L.; Li, D.; Li, C.; Feng, J.; Zhang, H. J. Mater. Chem. C 2021, 9, 1786. |
[30] | Fu, Y. B.; Wang, X.; Peng, M. Y. J. Mater. Chem. C 2020, 8, 6079. |
[31] | Wang, X.; Wang, J.; Li, X.; Luo, H.; Peng, M. J. Mater. Chem. C 2019, 7, 11227. |
[32] | Han, J.; Pan, F.; Molokeev, M. S.; Dai, J.; Peng, M.; Zhou, W.; Wang, J. ACS Appl. Mater. Inter. 2018, 10, 13660. |
[33] | Ye, S.; Liu, H.; Wang, Y. ; Lin, J.; Zhong, K.; Ding, J.; Wu, Q. ACS Sustain. Chem. Eng. 2020, 8, 18187. |
[34] | Xiao, Y. Q.; Chen, P.; Zhu, Y. H.; Zhang, N.; Zhuo, N. Z. J. Chin. Soc. Rare. Earth. 2020, 38, 724. (in Chinese) |
[34] | (肖勇强, 陈鹏, 朱月华, 张娜, 卓宁泽, 中国稀土学报, 2020, 38, 724). |
[35] | Wang, S.; Wu, H.; Fan, Y.; Wang, Q.; Tan, T.; Pang, R.; Zhang, S.; Li, D.; Jiang, L.; Li, C.; Zhang, H. Chem. Eng. J. 2022, 432, 134265. |
[36] | Pan, J.; Guo, Z.; Zhu, Z.; Sun, Z.; Zhang, T.; Zhang, J.; Zhang, X. Ceram. Int. 2018, 44, 20732. |
[37] | Wu, P. P.; Tong, X. B.; Xu, Y.; Han, J.; Seo, Y. J.; Zhang, X. M. Opt. Mater. 2019, 91, 246. |
[38] | Duke, A. C.; Hariyani, S.; Brgoch, J. Chem. Mater. 2018, 30, 2668. |
[39] | Annadurai, G.; Li, B.; Devakumar, B.; Guo, H.; Sun, L.; Huang, X. J. Lumin. 2019, 208, 75. |
[40] | Zhao, S.; Yao, J.; Zhang, G.; Fu, P.; Wu, Y. Acta. Crystallogr. C 2011, 67, 39. |
[41] | Wei, Y.; Li, G. G. Chin. J. Lumin. 2021, 42, 1365. (in Chinese) |
[41] | (魏忆, 李国岗, 发光学报, 2021, 42, 1365). |
[42] | Smeacetto, F.; Salvo, M.; Ajitdoss, L. C.; Perero, S.; Moskalewicz, T.; Boldrini, S.; Doubova, L.; Ferraris, M. Mater. Lett. 2010, 64, 2450. |
[43] | Brik, M. G.; Srivastava, A. M.; Popov, A. I. Opt. Mater. 2022, 127, 112276 |
[44] | Wang, B.; Lin, H.; Huang, F.; Xu, J.; Chen, H.; Lin, Z. B.; Wang, Y. S. Chem. Mater. 2016, 28, 3515. |
[45] | Fu, S. Y.; Zhu, Y. C.; Ma, Y. S.; Yao, Y.; Wang, Z. J.; Suo, H.; Wang, D. W.; Yang, Z. P.; Zhao, J. X.; Li, P. L. Chin. J. Lumin. 2022, 43, 1078. (in Chinese) |
[45] | (付素月, 朱烨程, 马颖珊, 姚瑶, 王志军, 索浩, 王大伟, 杨志平, 赵金鑫, 李盼来, 发光学报, 2022, 43, 1078). |
[46] | Wei, Y.; Gao, Z.; Yun, X.; Yang, H.; Liu, Y.; Li, G. Chem. Mater. 2020, 32, 8747. |
[47] | Lephoto, M. A.; Tshabalala, K. G.; Motloung, S. J.; Mhlongo, G. H.; Ntwaeaborwa, O. M. J. Lumin. 2018, 200, 94. |
[48] | Li, X.; Li, P.; Wang, Z.; Liu, S.; Bao, Q.; Meng, X.; Qiu, K.; Li, Y.; Li, Z.; Yang, Z. Chem. Mater. 2017, 29, 8792. |
[49] | Lian, M. B.; Ye, Z. C.; Mu, Y. X.; Hu, D. H.; Liu, Y.; Zhang, H. L.; Ji, S. M.; Huo, Y. P. Chin. J. Org. Chem. 2023, 43, 573. (in Chinese) |
[49] | (连铭槟, 叶泽聪, 穆英啸, 胡德华, 刘源, 张浩力, 籍少敏, 霍延平, 有机化学, 2023, 43, 573.) |
[50] | Zheng, J. H.; Chen, Q. J.; Wu, S. Q.; Guo, Z. Q.; Zhuang, Y. X.; Lu, Y. J.; Li, Y.; Chen, C. J. Mater. Chem. C 2015, 3, 11219. |
[51] | Zhang, Y.; Yang, C.; Feng, J.; Wang, N.; Li, Q.; Guo, F. W.; Wang, J.; Xu, D. S. Sci. China Chem. 2021, 51, 967. (in Chinese) |
[51] | (张宇, 杨创, 冯静, 王楠, 李琦, 郭枫晚, 王娟, 徐东升, 中国科学:化学, 2021, 51, 967). |
[52] | Zhang, J. R.; Huang, D. C.; Huang, C. C.; Liang, S. S.; Zhu, H. M. Acta Chim. Sinica 2022, 80, 453. (in Chinese) |
[52] | (张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼, 化学学报, 2022, 80, 453). |
[53] | Zhu, J. J.; Luo, L. H.; Du, P.; Xue, J. P. Chin. J. Inorg. Chem. 2022, 38, 244. (in Chinese) |
[53] | (朱久军, 罗来慧, 杜鹏, 薛俊鹏, 无机化学学报, 2022, 38, 244). |
[54] | Li, Q.; Chen, C.; Shen, B.; Yu, B.; Zhang, Y. J. Lumin. 2021, 237, 118196. |
[55] | Zhuo, Y.; Tehrani, A. M.; Oliynyk, A. O.; Duke, A. C.; Brgoch, J. Nat. Commun. 2018, 9, 4377. |
[56] | Zhong, J.; Zhao, W.; Zhuo, Y.; Yan, C.; Wen, J.; Brgoch, J. J. Mater. Chem. C 2019, 7, 654. |
[57] | Xia, Z.; Molokeev, M. S.; Im, W. B.; Unithrattil, S.; Liu, Q. J. Phys. Chem. C 2015, 119, 9488. |
[58] | Perdew, J. P.; Yue, W. Phys. Rev. B 1986, 33, 8800. |
[59] | Perdew, J. P. Phys. Rev. B 1986, 33, 8822. |
[60] | Langreth, D. C.; Perdew, J. P. Phys. Rev. B 1980, 21, 5469. |
[61] | Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. |
[62] | Kresse, G.; Hafne, J. J. Phys.-Condens. Mat. 1994, 6, 8245. |
[63] | Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. |
/
〈 |
|
〉 |