综述

高分子聚合物基碳纳米膜的电催化降解污水性能及机理

  • 张慧颖 ,
  • 于淑艳 ,
  • 李从举
展开
  • a 北京科技大学 能源与环境工程学院 北京 100083
    b 北京科技大学北京市工业典型污染物资源化处理重点实验室 北京 100083
    c 北京市高校节能与环保工程研究中心 北京 100083

张慧颖, 于2022年获得青岛科技大学学士学位, 2022年至今在于淑艳老师的指导下攻读硕士学位. 研究兴趣是探究静电纺丝电催化高效碳纤维微滤膜研制及其降解废水性能.

于淑艳讲师, 硕士生导师. 于2013获得山东大学双学士学位, 2018年获得新加坡南洋理工大学博士学位, 2020年获得清华大学博士后, 现为北京科技大学讲师. 研究兴趣是探究静电纺丝电催化高效碳纤维微滤膜研制及其降解废水性能.

李从举教授, 博士生导师. 于2004年获得中国科学院化学研究所博士学位, 现任北京科技大学教授. 2017年获得国家“万人计划”科技创新领军人才称号. 研究重点是环境纳米材料与技术.

收稿日期: 2023-01-01

  网络出版日期: 2023-03-24

基金资助

国家自然科学基金(52103070); 中央高校基本科研基金(FRF-TP-20-057A1); 中央高校基本科研基金(06500100); “万人计划”——国家高层次人才专项支持计划

Electrocatalytic Degradation of Wastewater by Polymer-based Carbon Nanomembranes and Mechanism

  • Huiying Zhang ,
  • Shuyan Yu ,
  • Congju Li
Expand
  • a School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    b Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
    c Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China

Received date: 2023-01-01

  Online published: 2023-03-24

Supported by

National Natural Science Foundation of China(52103070); Fundamental Research Funds for the Central Universities(FRF-TP-20-057A1); Fundamental Research Funds for the Central Universities(06500100); “Ten thousand plan”-National High-level personnel of special support program

摘要

目前的电催化高级氧化技术普遍使用平板电极, 因为传质受阻在降解污染物方面具有降解不彻底的缺点, 限制了其在电催化降解污染物的应用. 多孔碳纳米膜作为一种新型电极, 因其较大的比表面积, 提供较多反应活性位点, 可以有效地改善传质效率, 从而克服此传统技术的缺点, 在近年来得到广泛应用. 本文首先综述了使用高分子聚合物制备碳纳米膜的方法, 主要包括静电纺丝技术(EST)、化学气相沉积法(CVD)和模板法, 分别介绍了每种技术的原理和操作方法, 并展示每种方法的实际应用的实例. 其中静电纺丝技术具有可以制备取向碳纳米纤维并有助于碳纳米纤维改性的优点. 其次总结了碳膜电催化降解含抗生素、染料分子和其他有机物的污水的研究进展, 对不同条件下电催化降解有机物的效果进行综述, 大部分研究均通过在碳纳米膜上添加金属、金属氧化物和金属有机框架(MOF)来使电极的性能得到优化. 最后阐述了电化学高级氧化的机理、电极效应及主要的检测自由基的方法, 分别从直接氧化和间接氧化两个方面介绍了电化学高级氧化的机理, 并通过公式进行具体论证; 列举了电催化过程中可能产生的电极效应对有机物降解的影响; 检测自由基的方法主要总结了淬灭法和探针法, 并阐述了其原理和争议, 并对碳纳米膜电催化降解废水的发展进行展望.

本文引用格式

张慧颖 , 于淑艳 , 李从举 . 高分子聚合物基碳纳米膜的电催化降解污水性能及机理[J]. 化学学报, 2023 , 81(4) : 420 -430 . DOI: 10.6023/A23010001

Abstract

Advanced electrocatalytic oxidation technology generally uses plate electrodes, because the hindered mass transfer has disadvantages of incomplete degradation, which limits the application of electrocatalytic degradation of pollutants. As a new type of electrode, porous carbon nanomembranes can effectively improve the mass transfer efficiency, thereby overcoming the shortcomings of traditional technology, it have been widely used in recent years. In this paper, the methods for preparing carbon films are reviewed, including electrospinning technology (EST), chemical vapor deposition (CVD) and template method, the principles and operating methods of the different techniques are introduced separately, and examples of the practical application of each method are given. Among them, electrospinning technology has the advantages of facilitating the modification of carbon films and the preparation of oriented carbon membranes. Secondly, the research on the electrocatalytic degradation of wastewater containing antibiotics, dye molecules and other organic compounds by carbon membrane is summarized, the universality of electrocatalysis is illustrated from the effective degradation results of carbon membranes for different organic compounds, the high efficiency, cleanliness and reproducibility of carbon membranes as electrodes for electrocatalytic degradation of wastewater are further demonstrated by different studies. These studies have further improved the performance of carbon membrane as electrodes by adding metals, metal oxides and metal-organic frameworks to the carbon membranes. Finally, the mechanism of electrochemical advanced oxidation, effect of electrode and main detection methods of free radicals are described, the mechanism of electrochemical advanced oxidation is introduced in terms of direct and indirect oxidation, and specific demonstration is made through equations, the possible electrode effects and their influence on electrocatalytic degradation of wastewater are cited as example. The methods of detecting free radicals are mainly introduced as quenching method and probe method, the principles and controversies are explained, and the development of carbon film electrocatalytic degradation of wastewater is prospected.

参考文献

[1]
Qaseem, S.; Dlaminiabe, D. S.; Zikalala, S. A.; Teshaab, J. M.; Husainc, M. D.; Wang, C. H.; Jiang, Y. M.; Wei, X.; Vilakatig, J. D.; Li, J. X. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125270.
[2]
Tan, Y. X.; Wen, Q. X.; Li, M.; Yang, B. X.; Tang, Y. C.; Li, A.; Chen, Z. Q. Sep. Purif. Technol. 2022, 303, 122227.
[3]
Xu, L.; Sun, Y. K.; Du, L. S.; Zhang, J. J. Desalination 2014, 352, 58.
[4]
Qi, Y. F.; Zhou, X. Y.; Li, Z. J.; Yin, R. L.; Qin, J. H.; Li, H. S.; Guo, W. Q.; Li, A. J.; Qiu, R. L. Catalysts 2022, 12, 1327.
[5]
Kimura, K.; Yamakawa, M.; Hafuka, A. Chemosphere 2021, 277, 130244.
[6]
Ma, X.-Y.; Sun, Z.-R. Modern Chemical Industry 2018, 38, 42. (in Chinese)
[6]
(麻晓越, 孙治荣, 现代化工, 2018, 38, 42.)
[7]
Zhou, Y.-J.; Ji, Q.-H.; Hu, Z.-C.; Qu, J.-H. Journal of Civil and Environmental Engineering 2022, 44, 104. (in Chinese)
[7]
(周雨珺, 吉庆华, 胡承志, 曲久辉, 土木与环境工程学报, 2022, 44, 104.)
[8]
Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Adv. Energy. Mater. 2018, 8, 1702048.
[9]
Barbari, K.; Delimi, R.; Benredjem, Z.; Saaidia, S, ; Djemel, A.; Chouchane, T.; Oturan, N.; Oturan, M. A. Chemosphere 2018, 203, 1.
[10]
Zhu, J. H.; Zhang, Q.; Zhao, Y. J.; Zhang, R. Y.; Liu, L. F.; Yu, J. Y. Carbon 2022, 202, 13.
[11]
Xie, W. H.; Shi, Y. L.; Wang, Y. X.; Zheng, Y. L.; Liu, H.; Hu, Q.; Wei, S. Y.; Gu, H. B.; Guo, Z. H. Chem. Eng. J. 2020, 405, 126585.
[12]
Chen, Y. Y.; Li, F. L.; Dong, X. C.; Guo, D.; Huang, Y. X.; Li, S. P. J. Alloys Compd. 2021, 869, 159258.
[13]
Huang, G.; Chen, Y.-Z.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113. (in Chinese)
[13]
(黄刚, 陈玉贞, 江海龙. 化学学报, 2016, 74, 113.)
[14]
Hu, F.-P.; Zhu, J.-H.; Zhan, P.; Wang, X.-Y.; Long, L.-L.; Xu, L.; Xu, G.-P. Modern Chemical Industry. 2021, 41, 19. (in Chinese)
[14]
(胡锋平, 朱建华, 占鹏, 王晓英, 龙兰兰, 许莉, 许高平, 现代化工, 2021, 41, 19.)
[15]
Yadava, D.; Aminib, M.; Ehrmann, A. Eur. Polym. J. 2020, 138, 109963.
[16]
Anton, F. US 1975504A, 1934.
[17]
Qin, L. J. Mater. Sci. Lett. 1997, 16, 457.
[18]
Feng, L.; Yang, Z. L.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Ma, Y. M.; Yang, Z. Z.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Ed. 2003, 42, 4217.
[19]
Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B 2005, 109, 4707.
[20]
Dou, S.; Li, X.; Tao, L.; Huo, J.; Wang, S. Chem. Commun. 2016, 52, 9727.
[21]
Ding, Q.; Liu, M.; Miao, Y.; Huang, Y.; Liu, T. Electrochim. Acta 2015, 159, 1.
[22]
Wang, Y.; Zhao, M.; Hou, C.; Chen, W.; Li, S.; Ren, R.; Li, Z. Chem. Eng. J. 2021, 414, 128940.
[23]
Li, K.-H.; Cai, J.-W.; Zhang, Z.-H.; Tao, J.-T.; Wu, J.-L.; Zeng, S.-Y.-Y.; Wu, S.-P. J. Funct. Mater. 2021, 52, 8. (in Chinese)
[23]
(李亢悔, 蔡佳伟, 张自航, 陶江涛, 吴加龙, 曾诗喻瑶, 吴述平, 功能材料, 2021, 52, 8.)
[24]
Xue, C.; Hu, Y.-Y.; Huang, Z.-M. Polym. Bull. 2009, 6, 10. (in Chinese)
[24]
(薛聪, 胡影影, 黄争鸣, 高分子通报, 2009, 6, 10.)
[25]
Li, Q.; Li, X.-X.; Xie, F.-F.; Zhou, W.-L.; Chen, K.-Y.; Liu, Y.-Q. J. Text. Res. 2022, 43, 178. (in Chinese)
[25]
(李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清, 纺织学报, 2022, 43, 178.)
[26]
Wei, X.-Y.; Zhang, W.-J.; Chen, L.-W.; Liu, C.-Z.; Lin, Q.-F.; Jiang, Y.-M.; Wang, X.-J. Mater. Rev. 2022, 36, 51. (in Chinese)
[26]
(卫新宇, 张文瑾, 陈龙威, 刘成周, 林启富, 江贻满, 王晓洁, 材料导报, 2022, 36, 51.)
[27]
Chen, H.; Ren, L.-L.; He, J.-Y.; Yao, Y.-X.; Ma, X. Modern Chemical Industry. 2022, 42, 82. (in Chinese)
[27]
(陈慧, 任玲玲, 贺建芸, 姚雅萱, 马旭, 现代化工, 2022, 42, 82.)
[28]
Song, Y.-L.; Zhao, F.; Li, Z.-Z.; Huang, H.-J. Bull. Chin. Ceram. Soc. 2021, 40, 2770. (in Chinese)
[28]
(宋一龙, 赵芳, 李志尊, 黄红军, 硅酸盐通报, 2021, 40, 2770.)
[29]
Huang, Z.-B.; Gao, D.-S.; Li, Z.-H.; Lei, G.-T.; Zhou, J. Acta Chim. Sinica 2007, 65, 1007. (in Chinese)
[29]
(黄再波, 高德淑, 李朝晖, 雷钢铁, 周姬, 化学学报, 2007, 65, 1007.)
[30]
Liu, Y. Ph.D. Dissertation, Donghua University, Shanghai, 2008. (in Chinese)
[30]
(刘雍, 博士论文, 东华大学, 上海, 2008.)
[31]
Hu, P.-R.; Wang, H.-Z.; Li, Y.-G.; Zhang, Q.-H. Bull. Chin. Ceram. Soc. 2012, 31, 6. (in Chinese)
[31]
(胡沛然, 王宏志, 李耀刚, 张青红, 硅酸盐通报, 2012, 31, 6.)
[32]
Shi, C.-D.; Yu, S.-Y.; Li, C.-J. Fine Chemicals 2020, 37, 9. (in Chinese)
[32]
(施成东, 于淑艳, 李从举, 精细化工, 2020, 37, 9.)
[33]
Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O.; Bigaj, M.; Mansurov, Z.; Kuterbekov, K.; Bekmyrza, K. Chem. Phys. Lett. 2019, 737, 136821.
[34]
Qiao, H.; Yang, X.; Wei, J.-Z. Technology & Market. 2010, 6, 13. (in Chinese)
[34]
(乔辉, 杨笑, 魏金柱, 技术与市场, 2010, 6, 13.)
[35]
Geus, J. W.; Van Dillen, A. J.; Hoogenraad, M. S. MRS Online Proceedings Library 1994, 368, 87.
[36]
Xiao, J.-L. M.S. Thesis, Chongqing University, Chongqing, 2002. (in Chinese)
[36]
(肖金龙, 硕士论文, 重庆大学, 重庆, 2002.)
[37]
Maphutha, S.; Moothi, K.; Meyyappan, M.; Lyuke, S. E. Sci. Rep. 2013, 3, 1509.
[38]
Chen, Z.-X.; Zheng, B.-Y.; Li, X.-X.; Fu, M.-L.; Xie, S.-G.; Deng, C.; Hu, Y.-H. Chem. Ind. Eng. Prog. 2010, 29, 94. (in Chinese)
[38]
(陈彰旭, 郑炳云, 李先学, 傅明连, 谢署光, 邓超, 胡衍华, 化工进展, 2010, 29, 94.)
[39]
Wu, X.-H.; Hong, X.-T.; Nan, J.-M.; Li, L.-S.; Chen, H.-Y. Mater. Rev. 2012, 26, 61. (in Chinese)
[39]
(吴小辉, 洪孝挺, 南俊民, 李来胜, 陈红雨, 材料导报, 2012, 26, 61.)
[40]
Ma, M.-J.; Zhang, A.-Y. J. Henan Polytech. Univ., Nat. Sci. 2008, 27, 696. (in Chinese)
[40]
(马名杰, 张爱芸, 河南理工大学学报: 自然科学版, 2008, 27, 696.)
[41]
Cai, B.; Hu, Y.; Du, B.-J.; Li, J.-J. Mater. Rev. 2010, 24, 107. (in Chinese)
[41]
(蔡彬, 胡炜, 杜宝吉, 李健江, 材料导报, 2010, 24, 107.)
[42]
Feng, L.; Li, S. H.; Li, H. J.; Zhai, J.; Song, Y. L.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Ed. 2002, 41, 1221.
[43]
Gao, L.-H.; Shi, Y.-L.; Li, W.-H.; Liu, J.-M.; Cai, Y.-Q. Environ. Chem. 2013, 32, 15. (in Chinese)
[43]
(高立红, 史亚利, 厉文辉, 刘杰民, 蔡亚岐, 环境化学, 2013, 32, 15.)
[44]
Man, S. S.; Ge, X. T.; Xu, K.; Yang, H. F.; Bao, H. B.; Sun, Q.; He, M.; Xie, Y. T.; Li, A. Q.; Mo, Z. H.; Yang, W. J.; Li, X. Sep. Purif. Technol. 2022, 280, 119816.
[45]
Shi, C. D.; Yu, S. Y.; Wang, L.; Zhang, X. L.; Lin, X. Q.; Li, C. J. Journal of Environmental Chemical Engineering. 2021, 9, 106540.
[46]
Yu, S.; Gao, Y.; Kjan, R.; Liang, P.; Zhang, X.; Huang, X. J. Membr. Sci. 2020, 614, 118368.
[47]
Zhang, L.-S.; Jiang, L.-L. Environ. Prot. Chem. Ind. 2000, 20, 5. (in Chinese)
[47]
(张林生, 蒋岚岚, 化工环保, 2000, 20, 5.)
[48]
Sun, Y. Y.; Wang, G.; Dong, Q.; Qian, B. Q.; Meng, Y. L.; Qiu, J. S. Chem. Eng. J. 2014, 253, 73.
[49]
Liu, D. M.; Jin, C. C.; Shan, F. K.; He, J. J.; Wang, F. ACS Appl. Mater. Interfaces 2020, 9, 17443.
[50]
Pei, S.-Z.; Zhu, L.; Zhang, Z.-M. Teng, J.; Liu, X.-F.; You, S.-J. Acta Sci. Circumstantiae 2020, 40, 3658. (in Chinese)
[50]
(裴姝钊, 朱琳, 张梓萌, 滕洁, 刘雪峰, 尤世界, 环境科学学报, 2020, 40, 3658.)
[51]
Xiang, Q.; Xie, S.-Y.; Zhang, J.-L.; Yu, L.-J.; Shen, H.-Y.; Hu, M.-Q.; Dong, X.-Y. Ind. Water Treat. 2017, 37, 5. (in Chinese)
[51]
(项奇, 谢晟瑜, 张佳丽, 俞林佳, 沈昊宇, 胡美琴, 董新艳, 工业水处理, 2017, 37, 5.)
[52]
Vieno, N.; Sillanp??, M. Environ. Int. 2014, 69, 28.
[53]
Zhou, X. Y.; Guo, J.; Zhang, W.; Zhou, P.; Deng, J. J.; Lin, K. F. J. Hazard. Mater. 2014, 273, 27.
[54]
Naidoo, V.; Swan, G. E. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 269.
[55]
Kojima, S.; Bohner, A.; Von Wirén, N. J. Membr. Biol. 2006, 212, 83.
[56]
Qu, C.; Ren, N.; Zhang, S. J.; Li, Y. G.; Meng, S. J.; Li, X. H.; Wang, S. S.; Liang, D. W.; Li, A. R. Chemosphere 2021, 272, 129453.
[57]
Kumar, A.; Omar, R. A.; Verma, N. Chemosphere 2020, 248, 126030.
[58]
Alajami, M.; Yassin, M. A.; Ghouri, Z. K.; Al-Meer, S.; Barakat, N. A. M. Int. J. Hydrogen. Energy. 2018, 43, 5561.
[59]
Martinez-Huitle, C. A.; Ferro, S. Chem. Soc. Rev. 2006, 35, 1324.
[60]
Feng, Y.-J.; Cui, Y.-H.; Sun, L.-X.; Liu, J.-F.; Cai, W.-M. Journal of Harbin Institute of Technology 2004, 36, 450. (in Chinese)
[60]
(冯玉杰, 崔玉虹, 孙丽欣, 刘峻峰, 蔡伟民, 哈尔滨工业大学学报, 2004, 36, 450.)
[61]
Comninellis, C. Electrochim. Acta 1994, 39, 1857.
[62]
Singh, S.; Lo, S. L.; Srivastava, V. C.; Hiwarkar, A. D. J. Environ. Chem. Eng. 2016, 4, 2911.
[63]
Shi, C. D.; Yu, S. Y.; Li, C. J. Chem. Eng. J. 2022, 441, 136052.
[64]
Chen, Y.; Hong, L.; Xue, H. M.; Han, W. Q.; Wang, L. J.; Sun, X. Y.; Li, J. S. J. Electroanal. Chem. 2010, 648, 119.
[65]
Pei, S.; Shen, C.; Zhang, C.; Ren, N.; You, S. Environ. Sci. Technol. 2019, 53, 4406.
[66]
Pei, S. Z.; Teng, J.; Ren, N. Q.; You, S. J. Environ. Sci. Technol. 2020, 54, 4573.
[67]
Pei, S. Z.; You, S, J.; Zhang, J. N. ACS. EST. Eng. 2021, 1, 1502.
[68]
Guo, Y.; Long, J. F.; Huang, J.; Yu, G.; Wang, Y. J. Water Res. 2022, 215, 118275.
[69]
Lu, C.-L.; Chang, H.; Sun, F.-H. J. Environ. Eng. Technol. 2022, 12, 70. (in Chinese)
[69]
(卢成龙, 常红, 孙福红, 环境工程技术学报, 2022, 12, 70.)
[70]
Liu, Z. M.; Zhu, M. F.; Zhao, L.; Deng, C.; Ma, J.; Wang, Z.; Liu, H. B.; Wang, H. Chem. Eng. J. 2017, 314, 59.
[71]
Lv, F. J.; Zhao, X. Y.; Pan, S. L.; Cao, W. X.; Zuo, X. J.; Li, Y. J. Water Process Eng. 2022, 48, 102883.
[72]
Gao, L. W.; Guo, Y.; Huang, J.; Wang, B.; Deng, S. B.; Yu, G.; Wang, Y. J. Chem. Eng. J. 2022, 441, 135970.
文章导航

/