研究论文

乙炔热解为富勒烯的分子动力学模拟研究

  • 刘祯钰 ,
  • 甘利华
展开
  • 西南大学化学化工学院 重庆 400715

收稿日期: 2023-02-09

  网络出版日期: 2023-04-25

基金资助

项目受国家自然科学基金(51832008)

Molecular Dynamics Simulation of Acetylene Pyrolysis into Fullerenes

  • Zhenyu Liu ,
  • Li-Hua Gan
Expand
  • School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715

Received date: 2023-02-09

  Online published: 2023-04-25

Supported by

National Natural Science Foundation of China(51832008)

摘要

通过分子动力学模拟, 探讨了乙炔高温热解制备富勒烯的可能条件. 结果显示, 乙炔裂解可以形成富勒烯. 在裂解过程中, 乙炔热解产生的氢原子和氢分子能起到球磨碳团簇和阻止其尺寸过度增长的作用, 并促使碳笼更趋近于经典富勒烯, 暗示从炔烃制备富勒烯不需要惰性气体的协助, 从而可显著降低富勒烯的生产成本. 模拟显示, 以乙炔为反应物时, 主要有两种途径形成富勒烯. 第一种是碳链→团簇→碳笼, 多发生于低密度条件下; 第二种是碳链→团簇→碳片→碳笼, 多发生于高密度条件下. 在富勒烯形成过程中, 六元环的增长是由碳笼缺陷和键的旋转导致的. 这些结果有助于理解从炔烃热解制备富勒烯的过程, 对开发富勒烯的低成本生产方法具有重要启示意义.

本文引用格式

刘祯钰 , 甘利华 . 乙炔热解为富勒烯的分子动力学模拟研究[J]. 化学学报, 2023 , 81(5) : 502 -510 . DOI: 10.6023/A23020026

Abstract

Acetylene (C2H2) is one of the main intermediate species in the industrial conversion of natural gas to many high-value chemicals. In this work, molecular dynamics simulation was carried out to study the possibility of producing fullerenes by high temperature pyrolysis of acetylene. The effect of atomic and molecular hydrogen, reaction temperature and carbon density were discussed according to the results obtained from reactive force filed molecular dynamics simulation. The results show that C2H2 can form fullerenes at suitable temperature and density. In the early stage, hydrogen in the system is conducive to the aggregation of small carbon clusters and the formation of carbon chains is faster. Interestingly, in the later stage, it is not conducive to further aggregation reaction, but the atomic and molecular hydrogen produced by C2H2 pyrolysis can make the carbon clusters rounder and prevent the excessive growth of the carbon clusters, and can make the carbon cage more similar to classical fullerenes, which suggest that the production of fullerenes from C2H2 does not require the assistance of inert gases, thus significantly reducing the production cost of fullerenes in principle. Two main pathways of fullerenes formation were observed in simulations under different conditions. The first pathway is from carbon chain, cluster to carbon cage, most occurring in low density conditions. The other pathway is from carbon chain, cluster, graphene and carbon cage, most occurring in high density conditions. The growth of six-membered rings during fullerene formation is realized mainly via carbon cage defects and bond rotation, and the general trend is to make the carbon cage closer to the classical fullerene. The preparation of fullerenes by C2H2 pyrolysis is worthy of further study. These results are helpful to understand the process of producing fullerenes from the pyrolysis of C2H2 and have important implications for the development of industrial production methods of fullerenes.

参考文献

[1]
Xie, S.-Y.; Yang, S.-F.; Li, S.-H. Fullerenes: Fundamental and Application,Science Press, Beijing, 2019. (in Chinese)
[1]
(谢素原, 杨上峰, 李姝慧, 富勒烯: 从基础到应用, 科学出版社, 北京, 2019.)
[2]
Gan, L.-H.; Wang, C.-R. Structure, Properties and Applications of Fullerenes and Their Derivatives, Chemical Industry Press, Beijing, 2019. (in Chinese)
[2]
(甘利华, 王春儒, 富勒烯及其衍生物的结构、性质和应用, 化学工业出版社, 北京, 2019.)
[3]
Qiu, L.; Liang, J.-Y.; Zhang, Z.-X.; Wang, T.-S. Acta Chim. Sinica 2022, 80, 874. (in Chinese)
[3]
(邱玲, 梁家艺, 张竹霞, 王太山, 化学学报, 2022, 80, 874.)
[4]
Wu, B.; Wang, C.; Li, B.-L.; Wang, C.-R. Acta Chim. Sinica 2022, 80, 101. (in Chinese)
[4]
(吴波, 王冲, 李宝林, 王春儒, 化学学报, 2022, 80, 101.)
[5]
Ramazani, A.; Moghaddasi, M. A.; Malekzadeh, A. M.; Rezayati, S.; Hanifehpour, Y.; Joo, S. W. Inorg. Chem. Commun. 2021, 125, 108442.
[6]
Xue, X.-G.; Meng, L.-Y.; Ma, Y.; Zhang, C.-Y. J. Phys. Chem. C 2017, 121, 7502.
[7]
Xu, H. M.S. Thesis, Southwest University, Chongqing, 2020. (in Chinese)
[7]
(徐惠, 硕士论文, 西南大学, 重庆, 2020.)
[8]
Howard, J. B.; McKinnon, J. T.; Johnson, M. E.; Makarovsky, Y.; Lafleur, A. L. J. Phys. Chem. 1992, 96, 6657.
[9]
Homann, K. H. Angew. Chem., Int. Ed. 1998, 37, 2434.
[10]
Takehara, H.; Fujiwara, M.; Arikawa, M.; Diener, M. D.; Alford, J. M. Carbon 2005, 43, 311.
[11]
Zhu, Y.; Zhang, G.; Zhang, W.; Lin, T.; Xie, H.; Liu, Q.; Zhang, H. J. Wuhan Univ. Technol. (Mater. Sci. Ed.) 2007, 22, 94.
[12]
Sharma, A.; Mukut, K. M.; Roy, S. P.; Goudeli, E. Carbon 2021, 180, 215.
[13]
Wang, Y.; Gu, M.-Y.; Wu, J.-J.; Cao, L.; Lin, Y.-Y.; Huang, X. Y. Int. J. Hydrogen Energy 2021, 46, 36557.
[14]
Zhao, J.; Lin, Y.-Y.; Huang, K.; Gu, M.-Y.; Lu, K.; Chen, P.; Wang, Y.; Zhu, B.-C. Fuel 2020, 262, 116677.
[15]
Han, S.; Li, X.; Nie, F.; Zheng, M.; Liu, X.; Guo, L. Energy Fuels 2017, 31, 8434.
[16]
Liu, Y.; Wei, X.; Sun, W.-Z.; Zhao, L. Energy Fuels 2021, 35, 16778.
[17]
Zhang, C.-Y.; Zhang, C.; Ma, Y.; Xue, X.-G. Phys. Chem. Chem. Phys. 2015, 17, 11469.
[18]
Zhong, R.; Hong, R. Chem. Eng. J. 2020, 387, 124102.
[19]
Li, H. B.; Page, A. J.; Irle, S.; Morokuma, K. J. Phys. Chem. Lett. 2013, 4, 2323.
[20]
Van Duin, A. C.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A 2001, 105, 9396.
[21]
Brenner, D. W. Phys. Rev. B 1990, 42, 9458.
[22]
Mao, Q.; Van Duin, A. C.; Luo, K. H. Carbon 2017, 121, 380.
[23]
Yoon, K.; Rahnamoun, A.; Swett, J. L.; Iberi, V.; Cullen, D. A.; Vlassiouk, I. V.; Belianinov, A.; Jesse, S.; Sang, X.; Ovchinnikova, O. S.; Rondinone, A. J.; Unocic, R. R.; Van Duin, A. C. ACS Nano. 2016, 10, 8376.
[24]
Chen, J.; Pei, J.; Zhao, H. J. Phys. Chem. C 2021, 125, 19345.
[25]
Mei, H.; Cui, J.; He, X.; Lu, Y.; Sun, X.; Xu, K.; Mei, X. J. Phys. Chem. C 2022, 126, 13388.
[26]
Gaikwad, P. S.; Kowalik, M.; Jensen, B. D.; Van Duin, A.; Odegard, G. M. ACS Appl. Nano Mater. 2022, 5, 5915.
[27]
Qian, H. J.; van Duin, A. C.; Morokuma, K.; Irle, S. J. Chem. Theory Comput. 2011, 7, 2040.
[28]
Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.; Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. Comp. Phys. Commun. 2022, 271, 108171.
[29]
Plimpton, S. J. Comput. Phys. 1995, 117, 1.
[30]
Hoover, W. G. Phys. Rev. A 1985, 31, 1695.
[31]
Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33.
[32]
Qian, H. J.; Wang, Y.; Morokuma, K. Carbon 2017, 114, 635.
[33]
Ma, J.; Chen, X.; Song, M.; Wang, C.; Xia, W. Diamond Relat. Mater. 2021, 117, 108445.
[34]
Saha, B.; Irle, S.; Morokuma, K. J. Phys. Chem. C 2011, 115, 22707.
文章导航

/