综述

CO2捕集分离的功能离子液体及材料研究进展

  • 曾少娟 ,
  • 孙雪琦 ,
  • 白银鸽 ,
  • 白璐 ,
  • 郑爽 ,
  • 张香平 ,
  • 张锁江
展开
  • 中国科学院过程工程研究所 多相复杂系统国家重点实验室 离子液体清洁过程北京市重点实验室 北京 100190

曾少娟, 2007年在东华大学获硕士学位, 同年进入中国科学院过程工程研究所工作, 2016年获中国科学院过程工程研究所博士学位, 现为中国科学院过程工程研究所研究员. 主要研究方向: 离子液体构效关系、功能离子液体/材料设计合成和气体分离应用.

张锁江, 1986年获河南大学学士学位; 1994年获浙江大学博士学位, 之后进入北京化工大学做博士后; 1995年获得日本文部省奖学金在日本留学; 2001年回国进入中国科学院过程工程研究所工作, 2010年任中国科学院过程工程研究所所长, 2015年当选为中国科学院院士. 主要研究方向: 离子液体与绿色过程, 包括离子液体的分子设计、规模制备和清洁工艺.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-03-03

  网络出版日期: 2023-04-27

基金资助

国家重点研发计划(2022YFB4101701); 国家自然科学基金(22122814); 国家自然科学基金(21890764); 中国科学院青年创新促进会(2018064)

Research Progress of CO2 Capture and Separation by Functionalized Ionic Liquids and Materials

  • Shaojuan Zeng ,
  • Xueqi Sun ,
  • Yinge Bai ,
  • Lu Bai ,
  • Shuang Zheng ,
  • Xiangping Zhang ,
  • Suojiang Zhang
Expand
  • Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-03-03

  Online published: 2023-04-27

Supported by

National Key R&D Program of China(2022YFB4101701); National Natural Science Foundation of China(22122814); National Natural Science Foundation of China(21890764); Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018064)

摘要

CO2排放是一个严峻的全球性问题, 要实现我国双碳战略目标, CO2捕集技术不可或缺. 离子液体作为一类新型分离介质, 因其特有的低挥发性、良好的气体溶解性和结构可设计性等优势, 在CO2捕集分离领域备受关注. 重点讨论了近五年来所报道的氨基和非氨基功能离子液体、离子液体复配溶剂、离子液体杂化吸附和膜材料在CO2捕集分离方面的研究进展, 总结了氨基、电负性等功能位点对CO2分离性能及机理的影响规律, 以及功能离子液体在复配溶剂、吸附和膜材料中发挥的作用, 并对离子液体法CO2捕集技术的未来发展方向和前景提出了展望.

本文引用格式

曾少娟 , 孙雪琦 , 白银鸽 , 白璐 , 郑爽 , 张香平 , 张锁江 . CO2捕集分离的功能离子液体及材料研究进展[J]. 化学学报, 2023 , 81(6) : 627 -645 . DOI: 10.6023/A23030063

Abstract

CO2 emission is a serious global problem. CO2 capture technology is indispensable to achieve the strategic goals of carbon peaking and carbon neutrality in China. Ionic liquids as new media have attracted much attention in the field of CO2 capture and separation due to their unique advantages of low volatility, good gas solubility and structure designability. This review focuses on research progresses of amino and non-amino functionalized ionic liquids, ionic liquid hybrid solvents, ionic liquid modified adsorbents and membranes for CO2 capture and separation reported in the past five years. The influence of amino groups and electronegative functional sites on CO2 separation performance and mechanism, and the role of functionalized ionic liquids in hybrid solvents, adsorbents and membranes were summarized. Finally, the future development direction and prospect of ionic liquid-based CO2 capture technologies were also proposed.

参考文献

[1]
(a) Mohammad, A.; Kibum, K.; Cong, L.; Addepalli, A. Science 2016, 353, 467.
[1]
(b) Hirunsit, P.; Soodsawang, W.; Limtrakul, J. J. Phys. Chem. C 2015, 119, 8238.
[1]
(c) Alvarez-Guerra, M.; Albo, J.; Alvarez-Guerra, E.; Irabien, A. Energy Environ. Sci. 2015, 8, 2574.
[1]
(d) Rosen, B.; Salehi-Khojin, A.; Thorson, M.; Zhu, W.; Whipple, D.; Kenis, P.; Masel, R. Science 2011, 334, 643.
[2]
(a) Zeng, S.; Dong, H.; Bai, Y.; Zhang, X.; Zhang, S. Green Chem. Eng. 2020, 1, 1.
[2]
(b) Wu, Y.; Xu, J.; Mumford, K.; Stevens, G.; Fei, W.; Wang, Y. Green Chem. Eng. 2020, 1, 16.
[2]
(c) Li, B.; Wang, C.; Zhang, Y.; Wang, Y. Green Energy Environ. 2021, 6, 253.
[3]
(a) Wu, Y.; Ding, Y.; Xu, J.; Wang, Y.; Mumford, K.; Stevens, G.; Fei, W. Green Energy Environ. 2021, 6, 291.
[3]
(b) Liu, Y.; Dai, Z.; Zhang, Z.; Zeng, S.; Li, F.; Zhang, X.; Nie, Y.; Zhang, L.; Zhang, S.; Ji, X. Green Energy Environ. 2021, 6, 314.
[3]
(c) Zhang, S.; He, H.; Zhou, Q.; Zhang, X.; Lu, X.; Tian, Y. Green Chem. Eng. 2022, 3, 1.
[4]
Blanchard, L.; Hancu, D.; Beckman, E.; Brennecke, J. Nature 1999, 399, 28.
[5]
Eleanor, D.; Bates, R.; Ioanna, N.; James, H. J. Am. Chem. Soc. 2002, 124, 926.
[6]
Luo, X.; Guo, Y.; Ding, F.; Zhao, H.; Cui, G.; Li, H.; Wang, C. Angew. Chem., Int. Ed. 2014, 53, 7053.
[7]
Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Angew. Chem., Int. Ed. 2017, 56, 13293.
[8]
Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. J. Am. Chem. Soc. 2001, 124, 926.
[9]
Zareiekordshouli, F.; Lashani-zadehgan, A.; Darvishi, P. Int. J. Greenh. Gas Con. 2016, 53, 328.
[10]
Pan, L.; Shi, W.; Li, B.; Wei, X. J. Therm. Sci. 2021, 30, 1780.
[11]
Huang, K.; Zhang, J.; Hu, X.; Wu, Y. Energy Fuels 2017, 31, 14060.
[12]
Zhang, J.; Jia, C.; Dong, H.; Wang, J.; Zhang, X.; Zhang, S. Ind. Eng. Chem. Res. 2013, 52, 5835.
[13]
Simons, T.; Verheyen, T.; Izgorodina, E. I.; Vijayaraghavan, R.; Young, S.; Pearson, A.; Pas, S.; MacFarlane, D. Phys. Chem. Chem. Phys. 2016, 18, 1140.
[14]
Shi, G.; Zhao, H.; Chen, K.; Lin, W.; Li, H.; Wang, C. AIChE J. 2019, 66, 1.
[15]
Tiwari, S.; Pant, K.; Upadhyayula, S. J. CO2 Util. 2021, 45, 101416.
[16]
Gurkan, B.; de la Fuente, J.; Mindrup, E.; Ficke, L.; Goodrich, B.; Price, E.; Schneider, W. F.; Brennecke, J. F. J. Am. Chem. Soc. 2010, 132, 2116.
[17]
Brett, F.; Juan, C.; Burcu, E.; David, J.; Erica, A.; Huang, Y.; Brennecke, J. Ind. Eng. Chem. Res. 2011, 50, 111.
[18]
(a) Luo, X.; Ding, F.; Lin, W.; Qi, Y.; Li, H.; Wang, C. J. Phys. Chem. Lett. 2014, 5, 381.
[18]
(b) Luo, X.; Fan, X.; Shi, G.; Li, H.; Wang, C. J. Phys. Chem. B 2016, 120, 2807.
[19]
(a) Saravanamurugan, S.; Kunov-Kruse, A.; Fehrmann, R.; Riisager, A. ChemSusChem 2014, 7, 897.
[19]
(b) Sistla, Y.; Khanna, A. Chem. Eng. J. 2015, 273, 268.
[19]
(c) Chen, F.; Huang, K.; Zhou, Y.; Tian, Z.; Zhu, X.; Tao, D.; Jiang, D.; Dai, S. CIESC J. 2016, 55, 7166.
[20]
Goodrich, B. F.; de la Fuente, J.; Gurkan, B.; Lopez, Z.; Price, E.; Huang, Y.; Brennecke, J. J. Phys. Chem. B 2011, 115, 9140.
[21]
Firaha, D.; Kirchner, B. ChemSusChem 2016, 9, 1591.
[22]
Yang, Q.; Wang, Z.; Bao, Z.; Zhang, Z.; Yang, Y.; Ren, Q.; Xing, H.; Dai, S. ChemSusChem 2016, 9, 806.
[23]
Rezaeian, M.; Izadyar, M.; Nakhaei Pour, A. J. Phys. Chem. A 2018, 122, 5721.
[24]
Luo, X.; Lv, X.; Shi, G.; Meng, Q.; Li, H. R.; Wang, C. AIChE J. 2019, 65, 230.
[25]
Onofri, S.; Bodo, E. J. Phys. Chem. B 2021, 125, 5611.
[26]
Zhang, Y.; Zhang, S.; Lu, X.; Zhou, Q.; Fan, W.; Zhang, X. Chemistry 2009, 15, 3003.
[27]
Kasahara, S.; Kamio, E.; Shaikh, A. R.; Matsuki, T.; Matsuyama, H. J. Membr. Sci. 2016, 503, 148.
[28]
Shaikh, A.; Karkhanechi, H.; Kamio, E.; Yoshioka, T.; Matsuyama, H. J. Phys. Chem. C 2016, 120, 27734.
[29]
(a) Zhou, X.; Jing, G.; Liu, F.; Lv, B.; Zhou, Z. Energy Fuels 2017, 31, 1793.
[29]
(b) Zhou, Z.; Zhou, X.; Jing, G.; Lv, B. Energy Fuels 2016, 30, 7489.
[30]
Jing, G.; Qian, Y.; Zhou, X.; Lv, B.; Zhou, Z. ACS Sustainable Chem. Eng. 2017, 6, 1182.
[31]
Zeng, S.; Wang, J.; Bai, L.; Wang, B.; Gao, H.; Shang, D.; Zhang, X.; Zhang, S. Energy Fuels 2015, 29, 6039.
[32]
Zhou, L.; Fan, J.; Shang, X.; Wang, J. J. Chem. Thermodyn. 2013, 59, 28.
[33]
(a) Kanakubo, M.; Makino, T.; Taniguchi, T.; Nokami, T.; Itoh, T. ACS Sustainable Chem. Eng. 2016, 4, 525.
[33]
(b) Makino, T.; Kanakubo, M.; Masuda, Y.; Umecky, T.; Suzuki, A. Fluid Phase Equilib. 2014, 362, 300.
[34]
Wang, C.; Luo, H.; Li, H.; Zhu, X.; Yu, B.; Dai, S. Chemistry 2012, 18, 2153.
[35]
Zhao, T.; Zhang, X.; Tu, Z.; Wu, Y.; Hu, X. J. Mol. Liq. 2018, 268, 617.
[36]
Chen, K.; Mei, K.; Li, H.; Wang, C. CIESC J. 2016, 67, 623.
[37]
Lin, W.; Cai, Z.; Lv, X.; Xiao, Q.; Chen, K.; Li, H.; Wang, C. Ind. Eng. Chem. Res. 2019, 58, 16894.
[38]
Wang, C.; Luo, H.; Jiang, D.; Li, H.; Dai, S. Angew. Chem., Int. Ed. 2011, 50, 4918.
[39]
Wang, C.; Luo, H.; Jiang, D.; Li, H.; Dai, S. Angew. Chem., Int. Ed. 2010, 49, 5978.
[40]
Oh, S.; Morales-Collazo, O.; Keller, A. N.; Brennecke, J. F. J. Phys. Chem. B 2020, 124, 8877.
[41]
Seo, S.; DeSilva, M. A.; Brennecke, J. F. J. Phys. Chem. B 2014, 118, 14870.
[42]
Baj, S.; Krawczyk, T.; Dabrowska, A.; Siewniak, A.; Sobolewski, A. Korean J. Chem. Eng. 2015, 32, 2295.
[43]
Mei, K.; He, X.; Chen, K.; Zhou, X.; Li, H.; Wang, C. Ind. Eng. Chem. Res. 2017, 56, 8066.
[44]
Zhang, X.; Xiong, W.; Peng, L.; Wu, Y.; Hu, X. AIChE J. 2020, 66, 103319.
[45]
Huang, Y.; Cui, G.; Wang, H.; Li, Z.; Wang, J. J. CO2 Util. 2018, 28, 299.
[46]
(a) Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Chem. Rev. 2017, 117, 6881.
[46]
(b) Nobuoka, K.; Kitaoka, S.; Yamauchi, T.; Harran, T.; Ishikawa, Y. Chem. Lett. 2016, 45, 433.
[46]
(c) Shi, Y.; Xiong, D.; Wang, H.; Zhao, Y.; Wang, J. Langmuir 2016, 32, 6895.
[46]
(d) Fiorentini, E.; Escudero, L.; Wuilloud, R. Anal. Bioanal. Chem. 2018, 410, 4715.
[47]
Lin, W.; Pan, M.; Xiao, Q.; Li, H.; Wang, C. J. Phys. Chem. Lett. 2019, 10, 3346.
[48]
Zhang, F.; Gao, Y.; Wu, X.; Ma, J.; Wu, Y.; Zhang, Z. Chem. Eng. J. 2013, 223, 371.
[49]
Hasib-ur-Rahman, M.; Larachi, F. Environ. Sci. Technol. 2012, 46, 11443.
[50]
(a) Dean, C.; Jason, E.; Douglas, L.; Noble, R. Ind. Eng. Chem. Res. 2008, 47, 8496.
[50]
(b) Ahmady, A.; Hashim, M.; Aroua, M. Chem. Eng. J. 2011, 172, 763.
[50]
(c) Taib, M.; Murugesan, T. Chem. Eng. J. 2012, 181, 56.
[50]
(d) Zhao, Y.; Zhang, X.; Zeng, S.; Zhou, Q.; Dong, H.; Tian, X.; Zhang, S. J. Chem. Eng. Data 2010, 55, 3513.
[50]
(e) Ahmady, A.; Hashim, M.; Aroua, M. Fluid Phase Equilib. 2011, 309, 76.
[50]
(f) Aziz, N.; Yusoff, R.; Aroua, M. Fluid Phase Equilib. 2012, 322, 120.
[50]
(g) Gao, Y.; Zhang, F.; Huang, K.; Ma, J.; Wu, Y.; Zhang, Z. Int. J. Greenh. Gas Con. 2013, 19, 379.
[51]
Romanos, G.; Zubeir, L.; Likodimos, V.; Falaras, P.; Kroon, M.; Iliev, B.; Adamova, G.; Schubert, T. J. Phys. Chem. B 2013, 117, 12234.
[52]
Aparicio, S.; Atilhan, M. Chem. Phys. 2012, 400, 118.
[53]
Li, T.; Chen, B.; Piao, X. CIESC J. 2013, 64, 600. (in Chinese)
[53]
(李天成, 陈郴, 朴香兰, 化工学报, 2013, 64, 600.)
[54]
Zhang, Y.; Yu, P.; Luo, Y. Chem. Eng. J. 2013, 214, 355.
[55]
Simon, N.; Zanatta, M.; Dos Santos, F.; Corvo, M.; Cabrita, E.; Dupont, J. ChemSusChem 2017, 10, 4927.
[56]
Zheng, W.; Zhang, F.; Wu, Y.; Hu, X. J. Mol. Liq. 2017, 243, 169.
[57]
Li, F.; Bai, Y.; Zeng, S.; Liang, X.; Wang, H.; Huo, F.; Zhang, X. Int. J. Greenh. Gas Con. 2019, 90, 102801.
[58]
Wei, L.; Guo, R.; Tang, Y.; Zhu, J.; Liu, M.; Chen, J.; Xu, Y. Sep. Purif. Technol. 2020, 239, 116531.
[59]
Shohrat, A.; Zhang, M.; Hu, H.; Yang, X.; Liu, L.; Huang, H. Int. J. Greenh. Gas Con. 2022, 119, 103709.
[60]
Li, W.; Wen, S.; Shen, L.; Zhang, Y.; Sun, C.; Li, S. Energy Fuels 2018, 32, 10813.
[61]
Wang, K.; Li, T.; Li, Y.; Bai, Y.; Zeng, S.; Ren, B.; Zhang, X.; Dong, H. Chin. J. Proc. Eng. 2022, https://kns.cnki.net/kcms/detail/11.4541.TQ.20220622.1123.004.html in Chinese)
[61]
(王凯旋, 李涛, 李玉, 白银鸽, 曾少娟, 任保增, 张香平, 董海峰, 过程工程学报, 2022, https://kns.cnki.net/kcms/detail/11.4541.TQ.20220622.1123.004.html
[62]
Ma, D.; Zhu, C.; Fu, T.; Ma, Y.; Yuan, X. Chem. Eng. J. 2021, 417, 129302.
[63]
Zheng, W.; Huang, K.; Wu, Y.; Hu, X. AIChE J. 2018, 64, 209.
[64]
(a) Sun, X.; Waters, K. ACS Sustainable Chem. Eng. 2014, 2, 1910.
[64]
(b) Zhang, Z.; Hu, S.; Song, J.; Li, W.; Yang, G.; Han, B. ChemSusChem 2009, 2, 234.
[65]
Xiao, M.; Liu, H.; Gao, H.; Olson, W.; Liang, Z. Appl. Energ. 2019, 235, 311.
[66]
Zhang, J.; Peng, H.; Liu, Y.; Tao, D.; Wu, P.; Fan, J.; Huang, K. ACS Sustainable Chem. Eng. 2019, 7, 9369.
[67]
Li, C.; Zhao, T.; Yang, A.; Liu, F. ACS Omega 2021, 6, 34027.
[68]
Li, J.; Dai, Z.; Usman, M.; Qi, Z.; Deng, L. Int. J. Greenh. Gas Con. 2016, 45, 207.
[69]
Liu, F.; Shen, Y.; Shen, L.; Zhang, Y.; Chen, W.; Wang, Q.; Li, S.; Zhang, S.; Li, W. Sep. Purif. Technol. 2021, 275, 119123.
[70]
Li, F.; Zeng, S.; Bai, Y.; Dong, H.; Wang, H.; Ji, X.; Zhang, X. Energy Fuels 2020, 34, 8526.
[71]
Shaahmadi, F.; Hashemi Shahraki, B.; Farhadi, A. J. Chem. Eng. Data 2019, 64, 584.
[72]
Wu, G.; Liu, Y.; Liu, G.; Pang, X. Molecules 2020, 25, 1.
[73]
Cui, G.; Lv, M.; Yang, D. Chem. Commun. 2019, 55, 1426.
[74]
Yan, H.; Zhao, L.; Bai, Y.; Li, F.; Dong, H.; Wang, H.; Zhang, X.; Zeng, S. ACS Sustainable Chem. Eng. 2020, 8, 2523.
[75]
Cheng, J.; Wu, C.; Gao, W.; Li, H.; Ma, Y.; Liu, S.; Yang, D. Int. J. Mol. Sci. 2022, 23, 1893.
[76]
Haider, M.; Kumar, R. Sep. Purif. Technol. 2020, 248, 117055.
[77]
Zhang, N.; Huang, Z.; Zhang, H.; Ma, J.; Jiang, B.; Zhang, L. Ind. Eng. Chem. Res. 2019, 58, 13321.
[78]
Lian, S.; Song, C.; Liu, Q.; Duan, E.; Ren, H.; Kitamura, Y. J. Environ. Sci. 2021, 99, 281.
[79]
Xu, M.; Wang, S. CIESC J. 2018, 69, 1. (in Chinese)
[79]
(许咪咪, 王淑娟, 化工学报, 2018, 69, 1.)
[80]
Chen, Y.; Hu, H. Energy Fuels 2017, 31, 5363.
[81]
Huang, Q.; Jing, G.; Zhou, X.; Lv, B.; Zhou, Z. J. CO2 Util. 2018, 25, 22.
[82]
Jiang, W.; Wu, F.; Gao, G.; Li, X.; Zhang, L.; Luo, C. Chem. Eng. J. 2021, 420, 129897.
[83]
Seo, S.; Simoni, L. D.; Ma, M.; DeSilva, M.; Huang, Y.; Stadtherr, M.; Brennecke, J. Energy Fuels 2014, 28, 5968.
[84]
Han, G.; Yu, N.; Liu, D.; Yu, G.; Chen, X.; Zhong, C. AIChE J. 2020, 67, 1.
[85]
Zhang, W.; Gao, E.; Li, Y.; Bernards, M. T.; He, Y.; Shi, Y. J. CO2 Util. 2019, 34, 606.
[86]
Mohamedali, M.; Ibrahim, H.; Henni, A. Chem. Eng. J. 2018, 334, 817.
[87]
Karousos, D.; Vangeli, O.; Athanasekou, C.; Sapalidis, A.; Kouvelos, E.; Romanos, G.; Kanellopoulos, N. Chem. Eng. J. 2016, 306, 146.
[88]
Reed, D.; Dowson, G.; Styring, P. Front. Energy Res. 2017, 5, 1.
[89]
Raja Shahrom, M.; Nordin, A.; Wilfred, C. J. Environ. Chem. Eng. 2019, 7, 103319.
[90]
Zheng, S.; Zeng, S.; Li, G.; Yao, X.; Li, Z.; Zhang, X. Chem. Eng. J. 2023, 451, 138736.
[91]
(a) Erto, A.; Silvestre-Albero, A.; Silvestre-Albero, J.; Rodriguez- Reinoso, F.; Balsamo, M.; Lancia, A.; Montagnaro, F. J. Colloid Interf. Sci. 2015, 448, 41.
[91]
(b) Xu, W.; Zhang, J.; Cheng, N.; Li, Z.; Lan, H.; Jiang, W.; Huang, K.; Peng, H.; Du, J. J. Taiwan Inst. Chem. Eng. 2021, 125, 115.
[91]
(c) Huang, Z.; Karami, D.; Mahinpey, N. Chem. Eng. Res. Des. 2021, 167, 198.
[91]
(d) Hiremath, V.; Jadhav, A.; Lee, H.; Kwon, S.; Seo, J. Chem. Eng. J. 2016, 287, 602.
[92]
Yuan, J.; Fan, M.; Zhang, F.; Xu, Y.; Tang, H.; Huang, C.; Zhang, H. Chem. Eng. J. 2017, 316, 903.
[93]
Sun, L.; Yin, M.; Tang, S. J. Environ. Chem. Eng. 2021, 9, 105829.
[94]
He, X.; Mei, K.; Dao, R.; Cai, J.; Lin, W.; Kong, X.; Wang, C. AIChE J. 2017, 63, 3008.
[95]
Santiago, R.; Lemus, J.; Moya, C.; Moreno, D.; Alonso-Morales, N.; Palomar, J. ACS Sustainable Chem. Eng. 2018, 6, 14178.
[96]
Mohamedali, M.; Ibrahim, H.; Henni, A. Microporous Mesoporous Mater. 2020, 294, 109916.
[97]
Lee, Y.; Edgehouse, K.; Klemm, A.; Mao, H.; Pentzer, E.; Gurkan, B. ACS Appl. Mater. Inter. 2020, 12, 19184.
[98]
Zhao, X.; Yuan, Y.; Li, P.; Song, Z.; Ma, C.; Pan, D.; Wu, S.; Ding, T.; Guo, Z.; Wang, N. Chem. Commun. 2019, 55, 13179.
[99]
(a) Friess, K.; Izak, P.; Karaszova, M.; Pasichnyk, M.; Lanc, M.; Nikolaeva, D.; Luis, P.; Jansen, J. Membranes 2021, 11, 1.
[99]
(b) Shafie, S.; Md Nordin, N.; Racha, S.; Bilad, M.; Othman, M.; Misdan, N.; Jaafar, J.; Putra, Z.; Wirzal, M. J. Mol. Liq. 2022, 358, 119192.
[100]
Gao, H.; Bai, L.; Han, J.; Yang, B.; Zhang, S.; Zhang, X. Chem. Commun. 2018, 54, 12671.
[101]
Dai, Z.; Bai, L.; Hval, K. N.; Zhang, X.; Zhang, S.; Deng, L. Sci. China: Chem. 2016, 59, 538.
[102]
Moghadam, F.; Kamio, E.; Matsuyama, H. J. Membr. Sci. 2017, 525, 290.
[103]
Jiang, H.; Bai, L.; Yang, B.; Zeng, S.; Dong, H.; Zhang, X. Chin. J. Chem. Eng. 2022, 43, 169.
[104]
Pishva, S.; Hassanajili, S. J. Ind. Eng. Chem. 2022, 107, 180.
[105]
Ahmad, N.; Leo, C.; Mohammad, A.; Shaari, N.; Ang, W. Int. J. Energ. Res. 2021, 45, 9800.
[106]
Han, J.; Bai, L.; Jiang, H.; Zeng, S.; Yang, B.; Bai, Y.; Zhang, X. Ind. Eng. Chem. Res. 2020, 60, 593.
[107]
Hu, L.; Cheng, J.; Li, Y.; Liu, J.; Zhang, L.; Zhou, J.; Cen, K. Appl. Surf. Sci. 2017, 410, 249.
[108]
Ilyas, A.; Muhammad, N.; Gilani, M.; Vankelecom, I.; Khan, A. Sep. Purif. Technol. 2018, 205, 176.
[109]
Ma, J.; Ying, Y.; Guo, X.; Huang, H.; Liu, D.; Zhong, C. J. Mater. Chem. A 2016, 4, 7281.
文章导航

/