溶液加工型自主体热活化延迟荧光材料的研究进展
收稿日期: 2023-04-07
网络出版日期: 2023-05-19
基金资助
江苏省自然科学基金(BK20190090); 有机电子与信息显示国家重点实验室(GZR2022010020)
Research Progress of Solution-Processed Self-Host Thermally Activated Delayed Fluorescence Materials
Received date: 2023-04-07
Online published: 2023-05-19
Supported by
Natural Science Foundation of Jiangsu Province(BK20190090); State Key Laboratory of Organic Electronics and Information Displays(GZR2022010020)
十年来, 作为第三代有机发光二极管(organic light-emitting diodes, OLED)发光材料的热活化延迟荧光(thermally activated delayed fluorescence, TADF)材料备受学术界和产业界的广泛关注. TADF分子由于单重态与三重态之间的能级差较小, 当受到环境热激活时, 三重态激子可以通过反系间窜越转化为单重态, 从理论上讲, 可以实现100%的激子利用率. 这一特性使得OLED器件外量子效率显著提高. 溶液加工法具有成本低、方法简单、材料利用率高、可大面积生产等优势, 是柔性及印刷OLED器件制备工艺的理想候选. 具有良好的电荷传输能力的主体材料能有效降低激子密度和促进能量高效传递. 利用自主体TADF材料制备的溶液加工型器件能有效平衡载流子传输和提升器件性能, 同时在使用过程中可避免相分离, 保持薄膜的均匀性和提高器件的稳定性. 本综述总结了溶液加工型自主体TADF材料的研究进展. 首先介绍了TADF材料的基本原理和研究意义, 强调了溶液加工型自主体TADF材料在显示器件和照明器件等方面的应用潜力. 然后详细讨论了溶液加工型自主体TADF材料的不同分类(小分子、树枝状和聚合物)、材料结构及器件性能等方面的研究进展. 最后, 分别从自主体TADF材料当前的不足、存在的问题和可能解决方案等方面对其发展趋势进行了展望. 本综述旨在为相关领域的研究人员提供参考, 并促进TADF材料的进一步发展和应用.
刘振宇 , 饶俊峰 , 祝守加 , 王兵洋 , 余帆 , 冯全友 , 解令海 . 溶液加工型自主体热活化延迟荧光材料的研究进展[J]. 化学学报, 2023 , 81(7) : 820 -835 . DOI: 10.6023/A23040119
Over the past decade, thermally activated delayed fluorescence (TADF) materials have gained widespread attention within both the academic and industrial domains as the third-generation organic light-emitting diode (OLED) emitters. TADF molecules exhibit a small energy gap between the lowest singlet and triplet excited states (ΔEST), thereby facilitating the conversion of triplet excitons to singlet states through reverse intersystem crossing (RISC) upon thermal activation. This characteristic presents the theoretical possibility of achieving 100% exciton utilization, thereby substantially enhancing the external quantum efficiency of OLED devices. Solution processing offers several advantages, such as low cost, simple methods, high material utilization, and large-scale production, rendering it an ideal candidate for the fabrication of flexible and printable OLED devices. The host material with excellent charge transfer capabilities can effectively reduce exciton density and facilitate efficient energy transfer. Consequently, solution-processed devices constructed using self-host TADF materials can effectively balance charge carrier transport and avoid phase separation, thereby maintaining film uniformity, enhancing device performance and improving device stability. This review provides a comprehensive summary of the advancements made in the field of solution-processed self-host TADF materials. First, the basic principles and research significance of TADF materials are introduced, highlighting the potential applications of solution-processed self-host TADF materials in display and lighting devices. Subsequently, an overview of the current research progress on various classifications of solution-processed self-host TADF materials, including small molecules, dendrimers, and polymers are presented. Special emphasis is placed on elucidating the material structures and their performance within devices. Finally, a future outlook is provided regarding the development trend of self-host TADF materials, including their current deficiencies, existing issues, and potential solutions. The review aims to serve as a valuable reference for researchers in related fields, while simultaneously fostering further advancement and application of TADF materials.
[1] | Burroughes J. H.; Bradley D. D. C.; Brown A. R.; Marks R. N.; Mackay K.; Friend R. H.; Burns P. L.; Holmes A. B. Nature 1990, 347, 539. |
[2] | Feng Q. Y.; Li B.; Zuo Z. Y.; Xie S. L.; Yu M. N.; Liu B.; Wei Y.; Xie L. H.; Xia R. D.; Huang W. Chin. J. Polym. Sci. 2019, 37, 11. |
[3] | Bian Y.; Liu K.; Guo Y.; Liu Y. Acta Chim. Sinica 2020, 78, 848.. (in Chinese) |
[3] | (边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78, 848.) |
[4] | Tang C. W.; VanSlyke S. A. Appl. Phys. Lett. 1987, 51, 913. |
[5] | Ma Y.; Zhang H.; Shen J.; Che C. Synth. Met. 1998, 94, 245. |
[6] | Uoyama H.; Goushi K.; Shizu K.; Nomura H.; Adachi C. Nature 2012, 492, 234. |
[7] | Ai X.; Evans E. W.; Dong S. Z.; Gillett A. J.; Guo H. Q.; Chen Y. X.; Hele T. J.; Friend R. H.; Li F. Nature 2018, 563, 536. |
[8] | Xu Y.; Xu P.; Hu D.; Ma Y. Chem. Soc. Rev. 2021, 50, 1030. |
[9] | Wang L. D.; Zhao Z. F.; Zhan G.; Fang H. Y.; Yang H. N.; Huang T. Y.; Zhang Y. W.; Jiang N.; Duan L.; Liu Z. W.; Bian Z. Q.; Lu Z. H.; Huang C. H. Light Sci. Appl. 2020, 9, 157. |
[10] | Yao L.; Yang B.; Ma Y. Sci. China: Chem. 2014, 57, 335. |
[11] | Yang C. Sci. China: Chem. 2021, 64, 165. |
[12] | Wang Z. Q.; Cai J. L.; Zhang M.; Zheng C. J.; Ji B. M. Acta Chim. Sinica 2019, 77, 263. (in Chinese) |
[12] | (王志强, 蔡佳林, 张明, 郑才俊, 吉保明, 化学学报, 2019, 77, 263.) |
[13] | Kim K. H.; Kim J. J. Adv. Mater. 2018, 30, 1705600. |
[14] | Adachi C. SID Int. Symp. Dig. Tech. Pap. 2013, 44, 513. |
[15] | Yersin H.; Monkowius U.US 200913001703, 2016. |
[16] | Wang H.; Xie L.; Peng Q.; Meng L.; Wang Y.; Yi Y.; Wang P. Adv. Mater. 2014, 26, 5198. |
[17] | Zhang Q.; Tsang D.; Kuwabara H.; Hatae Y.; Li B.; Takahashi T.; Lee S.Y.; Yasuda T.; Adachi C. Adv. Mater. 2015, 27, 2096. |
[18] | Tanaka H.; Shizu K.; Nakanotani H.; Adachi C. J. Phys. Chem. C 2014, 118, 15985. |
[19] | Zhang Q.; Kuwabara H.; Potscavage W. J.; Huang S.; Hatae Y.; Shibata T.; Adachi C. J. Am. Chem. Soc. 2014, 136, 18070. |
[20] | Cho Y. J.; Jeon S. K.; Lee J. Y. Adv. Opt. Mater. 2016, 4, 688. |
[21] | Liu J. P.; Chen L.; Zhao L.; Tong C. Y.; Wang S. M.; Shao S. Y.; Wang L. X. Chin. J. Polym. Sci. 2023, 41, 802. |
[22] | Yu T.; Liu L.; Xie Z.; Ma Y. Sci. China: Chem. 2015, 58, 907. |
[23] | Zhang Y.; Zhang D.; Tsuboi T.; Qiu Y.; Duan L. Sci. China: Chem. 2019, 62, 393. |
[24] | Ning W.; Wang H.; Gong S.; Zhong C.; Yang C. Sci. China: Chem. 2022, 65, 1715. |
[25] | Ma Z.; Wan Y.; Dong W.; Si Z.; Duan Q.; Shao S. Chin. Chem. Lett. 2021, 32, 703. |
[26] | Chen F.; Zhao L.; Wang X.; Yang Q.; Li W.; Tian H.; Shao T.; Wang L.; Jing X.; Wang F. Sci. China: Chem. 2021, 64, 547. |
[27] | Chen J. X.; Tao W. W.; Chen W. C.; Xiao Y. F.; Wang K.; Cao C.; Yu J.; Li S.; Geng F. X.; Adachi C.; Lee C. S.; Zhang X. H. Angew. Chem., Int. Ed. 2019, 58, 14660. |
[28] | Chen Y.; Zhang D. D.; Zhang Y. W.; Zeng X.; Huang T. Y.; Liu Z. Y.; Li G. M.; Duan L. Adv. Mater. 2021, 33, 2103293. |
[29] | Ahn D. H.; Kim S. W.; Lee H.; Ko I. J.; Karthik D.; Lee J. Y.; Kwon J. H. Nat. Photonics 2019, 13, 540. |
[30] | Zhang D.; Duan L.; Li C.; Li Y.; Li H.; Zhang D.; Qiu Y. Adv. Mater. 2014, 26, 5050. |
[31] | Nakanotani H.; Higuchi T.; Furukawa T.; Masui K.; Morimoto K.; Numata M.; Tanaka H.; Sagara Y.; Yasuda T.; Adachi C. Nat. Commun. 2014, 5, 4016. |
[32] | Lu T. H.; Huo Y. P.; Fang X. M.; Ouyang X. H. Chin. J. Org. Chem. 2013, 33, 2063. (in Chinese) |
[32] | (陆天华, 霍延平, 方小明, 欧阳新华, 有机化学, 2013, 33, 2063.) |
[33] | Chen L.; Lv J.; Wang S.; Shao S.; Wang L. Adv. Opt. Mater. 2021, 9, 2100752. |
[34] | Wang X.; Hu J.; Lv J.; Yang Q.; Tian H.; Shao S.; Wang F. Angew. Chem., Int. Ed. 2021, 60, 16585. |
[35] | Xu T.; Xie G.; Huang T.; Liu H.; Cao X.; Tang Y.; Yang C. Org. Electron. 2021, 96, 106184. |
[36] | Tseng Z. L.; Huang W. L.; Yeh T. H.; Xu Y. X.; Chiang C. H. Polymers 2021, 13, 1668. |
[37] | Gupta A. K.; Li W.; Ruseckas A.; Lian C.; Carpenter-Warren C. L.; Cordes D. B.; Zysman-Colman E. ACS Appl. Mater. Interfaces 2021, 13, 15459. |
[38] | Godumala M.; Choi S.; Kim S. K.; Kim S. W.; Kwon J. H.; Cho M. J.; Choi D. H. J. Mater. Chem. C 2018, 6, 10000. |
[39] | Zou Y.; Gong S.; Xie G.; Yang C. Adv. Opt. Mater. 2018, 6, 1800568. |
[40] | Wang F.; Cao X.; Mei L.; Zhang X.; Hu J.; Tao Y. Chin. J. Chem. 2018, 36, 241. |
[41] | Cho Y. J.; Chin B. D.; Jeon S. K.; Lee J. Y. Adv. Funct. Mater. 2015, 25, 6786. |
[42] | Luo J.; Gong S.; Gu Y.; Chen T.; Li Y.; Zhong C.; Xie G. H.; Yang C. J. Mater. Chem. C 2016, 4, 2442. |
[43] | Albrecht K.; Matsuoka K.; Fujita K.; Yamamoto K. Angew. Chem., Int. Ed. 2015, 54, 5677. |
[44] | Sun K. Y.; Liu D.; Tian W. W.; Gu F.; Wang W. X.; Cai Z. S.; Jiang W.; Sun Y. M. J. Mater. Chem. C 2020, 8, 11850. |
[45] | Ma F.; Zhao G.; Zheng Y.; He F.; Hasrat K.; Qi Z. ACS Appl. Mater. Interfaces 2019, 12, 1179. |
[46] | Li C.; Ren Z.; Sun X.; Li H.; Yan S. Macromolecules 2019, 52, 2296. |
[47] | Murawski C.; Leo K.; Gather M. C. Adv. Mater. 2013, 25, 6801. |
[48] | Kim M.; Jeon S. K.; Hwang S. H.; Lee S. S.; Yu E.; Lee J. Y. Adv. Mater. 2015, 27, 2515. |
[49] | Chaskar A.; Chen H. F.; Wong K. T. Adv. Mater. 2011, 23, 3876. |
[50] | Godumala M.; Choi S.; Cho M. J.; Choi D. H. J. Mater. Chem. C 2019, 7, 2172. |
[51] | Shi Y. Z.; Wu H.; Wang K.; Yu J.; Ou X. M.; Zhang X. H. Chem. Sci. 2022, 13, 3625. |
[52] | Ban X. X.; Chen F.; Liu Y.; Pan J.; Zhu A. Y.; Jiang W.; Sun Y. M. Chem. Sci. 2019, 10, 3054. |
[53] | Wang S.; Zhang H.; Zhang B.; Xie Z.; Wong W. Y. Mater. Sci. Eng. R. Rep. 2020, 140, 100547. |
[54] | Dong R.; Li J.; Liu D.; Li D.; Mei Y.; Ma M.; Jiang J. Adv. Opt. Mater. 2021, 9, 2100970. |
[55] | Chatterjee T.; Wong K. T. Adv. Opt. Mater. 2019, 7, 1800565. |
[56] | Wang F.; Tao Y.; Huang W. Acta Chim. Sinica 2015, 73, 9. (in Chinese) |
[56] | (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9.) |
[57] | Ban X. X.; Zhu A. Y.; Zhang T. L.; Tong Z. W.; Jiang W.; Sun Y. M. Chem. Commun. 2017, 53, 11834. |
[58] | Li C.; Duan L.; Zhang D.; Qiu Y. ACS Appl. Mater. Interfaces 2015, 7, 15154. |
[59] | Rizzo F.; Cucinotta F. Isr. J. Chem. 2018, 58, 874. |
[60] | Furue R.; Nishimoto T.; Park I. S.; Lee J.; Yasuda T. Angew. Chem., Int. Ed. 2016, 55, 7171. |
[61] | Mao X.; Xie F.; Wang X.; Wang Q.; Qiu Z.; Elsegood M. R.; Bai J.; Feng X.; Redshaw C.; Huo Y.; Hu J.; Chen Q. Chin. J. Chem. 2021, 39, 2154. |
[62] | Huang R.; Yang Z.; Chen H.; Liu H.; Tang B. Z.; Zhao Z. Chin. J. Chem. 2023, 41, 527. |
[63] | Xu S.; Liu T.; Mu Y.; Wang Y. F.; Chi Z.; Lo C. C.; Liu S. W.; Zhang Y.; Lien D. A.; Xu J. Angew. Chem., Int. Ed. 2015, 54, 874. |
[64] | Luo J. D; Xie Z. L; Lam J. W.; Cheng L.; Chen H. Y.; Qiu C. F; Kwok H. S.; Zhan X. W.; Tang B. Z. Chem. Commun. 2001, 18, 1740. |
[65] | Jhulki S.; Cooper M. W.; Barlow S.; Marder S. R. Mater. Chem. Front. 2019, 3, 1699. |
[66] | Liu D.; Wei J. Y.; Tian W. W.; Jiang W.; Sun Y. M.; Zhao Z.; Tang B. Z. Chem. Sci. 2022, 11, 7194. |
[67] | Zhou X.; Xiang Y.; Ni F.; Zou Y.; Chen Z.; Yin X.; Xie G.; Gong S.; Yang C. Dyes Pigm. 2020, 176, 108179. |
[68] | Huo J. N.; Zheng Y. N.; Zhang D.; Xu H. X.; Li Y. B.; Miao Y. Q; Shi H. P.; Tang B. Z. Dyes. Pigm. 2021, 196, 109781. |
[69] | Zhou T.; Qian Y.; Wang H. J.; Feng Q. Y.; Xie L. H.; Huang W. Acta Chim. Sinica 2021, 79, 557. (in Chinese) |
[69] | (周涛, 钱越, 王宏健, 冯全友, 解令海, 黄维, 化学学报, 2021, 79, 557.) |
[70] | Wu C.; Wu Z.; Wang B.; Li X.; Zhao N.; Hu J.; Ma D.; Wang Q. ACS Appl. Mater. Interfaces 2017, 9, 32946. |
[71] | Kim H. J.; Kim S. K.; Godumala M.; Yoon J.; Kim C. Y.; Jeong J. E.; Woo H. Y.; Kwon J. H.; Cho M. J.; Choi D. H. Chem. Commun. 2019, 55, 9475. |
[72] | Zhao Y. D.; Wang W. G.; Gui C.; Fang L.; Zhang X. L.; Wang S. J.; Chen S. M.; Shi S. P.; Tang B. Z. J. Mater. Chem. C 2018, 6, 2873. |
[73] | Liu H.; Zeng J.; Guo J.; Nie H.; Zhao Z.; Tang B. Z. Angew. Chem., Int. Ed. 2018, 57, 9290. |
[74] | Leng P. P.; Sun S. Q.; Guo R. D.; Zhang Q.; Liu W.; Lv X. L.; Ye S. F.; Wang L. Org. Electron. 2020, 78, 105602. |
[75] | Albrecht K.; Matsuoka K.; Fujita K.; Yamamoto K. Mater. Chem. Front. 2018, 2, 1097. |
[76] | Sun K. Y.; Chu D.; Cui Y. D.; Tian W. W.; Sun Y. M.; Jiang W. Org. Electron. 2017, 48, 389. |
[77] | Sun K. Y.; Sun Y. M.; Liu D.; Feng Y. L.; Zhang X. H.; Sun Y. M.; Jiang W. Dyes Pigm. 2017, 147, 436. |
[78] | Konidena R. K.; Lee J. Y. Chem. Rec. 2019, 19, 1499. |
[79] | Sun K.Y.; Sun Y. B.; Huang T. Y.; Luo J. R.; Jiang W.; Sun Y. M. Org. Electron. 2017, 42, 123. |
[80] | Ban X. X.; Jiang W., Lu T. T.; Jing X. F.; Tang Q. F.; Huang S. L.; Sun K. Y.; Huang B.; Lin B. P.; Sun Y. M. J. Mater. Chem. C 2016, 4, 8810. |
[81] | Godumala M.; Choi S.; Kim H. J.; Lee C.; Park S.; Moon J. S.; Woo S. J.; Hyuk J.; Choi D. H. J. Mater. Chem. C 2018, 6, 1160. |
[82] | Ban X. X.; Zhu A. Y.; Zhang T. L.; Tong Z. W.; Jiang W.; Sun Y. M. ACS Appl. Mater. Interfaces 2017, 9, 21900. |
[83] | Sun K.Y.; Sun Y. M.; Tian W. W.; Liu D.; Feng Y. L.; Sun Y. M.; Jiang W. J. Mater. Chem. C 2018, 6, 43. |
[84] | Ban X. X.; Lin B. P.; Jiang W.; Sun Y. M. Chem. - Asian J. 2017, 12, 216. |
[85] | Ban X. X.; Jiang W.; Sun K. Y.; Lin B. P.; Sun Y. M. ACS Appl. Mate. Interfaces. 2017, 9, 7339. |
[86] | Li J.; Liao X.; Xu H.; Li L.; Zhang J.; Wang H.; Xu B. Dyes Pigm. 2017, 140, 79. |
[87] | Albrecht K.; Matsuoka K.; Fujita K.; Yamamoto K. Angew. Chem., Int. Ed. 2015, 54, 5677. |
[88] | Albrecht K.; Matsuoka K.; Yokoyama D.; Sakai Y.; Nakayama A.; Fujita K.; Yamamoto K. Chem. Commun. 2017, 53, 2439. |
[89] | Matsuoka K.; Albrecht K.; Yamamoto K.; Fujita K. Sci. Rep. 2017, 7, 1. |
[90] | Matsuoka K.; Albrecht K.; Nakayama A.; Yamamoto K.; Fujita K. ACS Appl. Mater. Interfaces 2018, 10, 33343. |
[91] | Li Y.; Xie G.; Gong S.; Wu K.; Yang C. Chem. Sci. 2016, 7, 5441. |
[92] | Luo J. J.; Gong S. L.; Gu Y.; Chen T. H.; Li Y. F.; Zhong C.; Xie G. H.; Yang C. L. J. Mater. Chem. C 2016, 4, 2442. |
[93] | Zhang Q.; Li B.; Huang S.; Nomura H.; Tanaka H.; Adachi C. Nat. Photonics 2014, 8, 326. |
[94] | Zhang Q.; Li J.; Shizu K.; Huang S.; Hirata S.; Miyazaki H.; Adachi C. J. Am. Chem. Soc. 2012, 134, 14706. |
[95] | Wu S.; Aonuma M.; Zhang Q.; Huang S.; Nakagawa T.; Kuwabara K.; Adachi C. J. Mater. Chem. C 2013, 2, 421. |
[96] | Wang J.; Peng J.; Yao W.; Jiang C.; Liu C.; Zhang C.; Yao C. Org. Electron. 2017, 48, 262. |
[97] | Nikolaenko A. E.; Cass M.; Bourcet F.; Mohamad D.; Roberts M. Adv. Mater. 2015, 27, 7236. |
[98] | Shao S.; Ding J.; Wang L.; Jing X.; Wang F. J. Am. Chem. Soc. 2012, 134, 15189. |
[99] | Huang T. Y.; Jiang W.; Duan L. J. Mater. Chem. C 2018, 6, 5577. |
[100] | Luo J.; Xie G.; Gong S.; Chen T.; Yang C. Chem. Commun. 2016, 52, 2292. |
[101] | Xie G.; Luo J.; Huang M.; Chen T.; Wu K.; Gong S.; Yang C. Adv. Mater. 2017, 29, 1604223. |
[102] | Zhou X.; Huang M.; Zeng X.; Chen T.; Xie G.; Yin X.; Yang C. Polym. Chem. 2019, 10, 4201. |
[103] | Zong W. S.; Qiu W. D.; Yuan P.; Wang F. F.; Liu Y. L.; Xu S. G.; Su S. J.; Cao S. K. Polymer 2022, 240, 124468. |
[104] | Li C.; Wang Y. K.; Sun D. M.; Li H. H.; Sun X. L.; Ma D. G.; Ren Z. J.; Yan S. K. ACS Appl. Mater. Interfaces 2018, 10, 5731. |
[105] | Li C. S.; Harrison A. K.; Liu Y. C.; Zhao Z. N.; Dias F. B.; Zeng C.; Yan S. K.; Bryce M. R.; Ren Z. J. Chem. Eng. J. 2022, 435, 134924. |
[106] | Kang J. A.; Lim J.; Lee J. Y. Mater. Chem. Front. 2021, 5, 7259. |
/
〈 |
|
〉 |