金属有机骨架封装金属纳米粒子复合材料的制备及其催化应用研究进展★
收稿日期: 2023-04-20
网络出版日期: 2023-05-26
基金资助
国家重点研发计划(2021YFA1500403); 国家重点研发计划(2021YFA1200302); 中国科学院战略性先导研究计划(XDB36000000); 国家自然科学基金(92056204); 国家自然科学基金(21890381); 国家自然科学基金(21721002); 国家自然科学基金(22173024); 国家自然科学基金(21722102); 以及中国科学院青年创新促进会的资助.
Research Progress on the Preparation of Metal-Organic Frameworks Encapsulated Metal Nanoparticle Composites and Their Catalytic Applications★
Received date: 2023-04-20
Online published: 2023-05-26
Supported by
National Key Research and Development Program of China(2021YFA1500403); National Key Research and Development Program of China(2021YFA1200302); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000); National Natural Science Foundation of China(92056204); National Natural Science Foundation of China(21890381); National Natural Science Foundation of China(21721002); National Natural Science Foundation of China(22173024); National Natural Science Foundation of China(21722102); and the Youth Innovation Promotion Association CAS.
金属有机骨架(MOF)具有比表面积高、金属节点丰富、有机配体多样以及孔道结构有序等特点, 更为重要的是, 其组成和结构易于设计和调控, 从而有望成为一类新型的催化载体材料. 近年来, 金属纳米粒子封装于MOF的复合结构因其独特的结构特点在催化领域引起了广泛的研究兴趣, 然而在其结构的精准制备以及结构与催化性能间的构效关系方面尚缺乏深入系统的研究. 基于此, 本文系统总结了近期关于MOF封装金属纳米粒子复合材料的制备方法及其在催化中应用的研究进展. 首先, 总结了MOF封装金属纳米粒子复合材料的合成方法. 其次, 从金属纳米粒子与MOF的孔结构、有机配体或/和金属节点的协同作用角度, 讨论了其在催化反应中的应用, 并阐明了活性组分、结构及其性能之间的关系. 最后, 从合成方法和催化应用方面, 讨论了该研究方向面临的挑战、机遇和未来发展前景.
郑奉斌 , 王琨 , 林田 , 王英龙 , 李国栋 , 唐智勇 . 金属有机骨架封装金属纳米粒子复合材料的制备及其催化应用研究进展★[J]. 化学学报, 2023 , 81(6) : 669 -680 . DOI: 10.6023/A23040146
Metal-organic frameworks (MOFs) are characteristic of high specific surface area, abundant metal nodes, diverse organic ligands, and ordered pore structure. More importantly, its composition and structure are easy to be designed and controlled, so it is very promising to become a new class of catalytic carrier materials. In recent years, the composites of metal nanoparticles encapsulated by MOFs have attracted great attention in the field of catalysis due to their unique structural features. However, more in-depth and systematic research is still needed in terms of its precise preparation and the relationship of the structure and catalytic performance. Based on above, the recent research progress on the preparation methods of metal nanoparticles encapsulated by MOFs and their catalytic applications are systematically summarizd. First, the synthesis methods of metal nanoparticles encapsulated by MOFs are summarized. Then, the catalytic applications are discussed in term of synergy among metal nanoparticles, pore structure, organic ligands or/and metal nodes of MOFs. Moreover, the relationships among active component, structure and their properties are illustrated. Finally, the challenges, opportunities and future development prospects of this research direction are discussed from the aspects of synthesis methods and catalytic applications.
| [1] | Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. |
| [2] | Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Nature 2016, 539, 76. |
| [3] | Li, G.; Zhao, S.; Zhang, Y.; Tang, Z. Adv. Mater. 2018, 30, 1800702. |
| [4] | Liu, D.; Wan, J.; Pang, G.; Tang, Z. Adv. Mater. 2019, 31, 1803291. |
| [5] | Ma, Y.; Lu, W.; Han, X.; Chen, Y.; da Silva, I.; Lee, D.; Sheveleva, A. M.; Wang, Z.; Li, J.; Li, W.; Fan, M.; Xu, S.; Tuna, F.; McInnes, E. J. L.; Cheng, Y.; Rudi?, S.; Manuel, P.; Frogley, M. D.; Ramirez-Cuesta, A. J.; Schr?der, M.; Yang, S. J. Am. Chem. Soc. 2022, 144, 8624. |
| [6] | Yang, Q.; Wang, Y.; Tang, X.; Zhang, Q.; Dai, S.; Peng, H.; Lin, Y.; Tian, Z.; Lu, Z.; Chen, L. Nano Lett. 2022, 22, 838. |
| [7] | Wen, L.; Sun, K.; Liu, X.; Yang, W.; Li, L.; Jiang, H.-L. Adv. Mater. 2023, 35, 2210669. |
| [8] | Wang, H.; Zheng, F.; Xue, G.; Wang, Y.; Li, G.; Tang, Z. Sci. China: Chem. 2021, 64, 1854. |
| [9] | Zou, Y.-H.; Huang, Y.-B.; Si, D.-H.; Yin, Q.; Wu, Q.-J.; Weng, Z.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 20915. |
| [10] | Pan, Y.; Qian, Y.; Zheng, X.; Chu, S.-Q.; Yang, Y.; Ding, C.; Wang, X.; Yu, S.-H.; Jiang, H.-L. Natl. Sci. Rev. 2020, 8, nwaa224. |
| [11] | Huang, Y.-B.; Wang, Q.; Liang, J.; Wang, X.; Cao, R. J. Am. Chem. Soc. 2016, 138, 10104. |
| [12] | Wang, S.; Ly, H. G. T.; Wahiduzzaman, M.; Simms, C.; Dovgaliuk, I.; Tissot, A.; Maurin, G.; Parac-Vogt, T. N.; Serre, C. Nat. Commun. 2022, 13, 1284. |
| [13] | Wang, D.; Suo, M.; Lai, S.; Deng, L.; Liu, J.; Yang, J.; Chen, S.; Wu, M.-F.; Zou, J.-P. Appl. Catal. B: Environ 2023, 321, 122054. |
| [14] | Sun, D.; Chen, L.; Zeng, L.; Shi, X.; Lu, J. J. Mater. Chem. A 2023, 11, 31. |
| [15] | Xu, H.; Wei, X.; Zeng, H.; Jiang, C.; Wang, Z.; Ouyang, Y.; Lu, C.; Jing, Y.; Yao, S.; Dai, F. Nano Res. 2023, https://doi.org/10.1007/s12274-12023-15576-12273. |
| [16] | Ma, D.; Huang, X.; Zhang, Y.; Wang, L.; Wang, B. Nano Res. 2023, 16, 7906. |
| [17] | Gao, M.-L.; Li, L.; Sun, Z.-X.; Li, J.-R.; Jiang, H.-L. Angew. Chem., Int. Ed. 2022, 61, e202211216. |
| [18] | Chen, J.-M.; Cui, C.-Q.; Liu, H.-L.; Li, G.-D. Acta Chim. Sinica 2022, 80, 467. (in Chinese) |
| [18] | (陈俊敏, 崔承前, 刘瀚林, 李国栋, 化学学报, 2022, 80, 467.) |
| [19] | Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1 |
| [20] | Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Chem. Soc. Rev. 2017, 46, 126. |
| [21] | Xiao, L.; Cheng, C.; Li, Z.; Zheng, C.; Du, J.; Song, M.; Wan, Y.; Li, S.; Jun, G.; Zhao, M. Nano Res. 2023, https://doi.org/10.1007/s12274-12023-15750-12277. |
| [22] | Liu, Y.; Liu, J.; Xiong, H.; Chen, J.; Chen, S.; Zeng, Z.; Deng, S.; Wang, J. Nat. Commun. 2022, 13, 5515. |
| [23] | Yang, Y.; Li, L.; Lin, R.-B.; Ye, Y.; Yao, Z.; Yang, L.; Xiang, F.; Chen, S.; Zhang, Z.; Xiang, S.; Chen, B. Nat. Chem. 2021, 13, 933. |
| [24] | Choe, J. H.; Kim, H.; Kang, M.; Yun, H.; Kim, S. Y.; Lee, S. M.; Hong, C. S. J. Am. Chem. Soc. 2022, 144, 10309. |
| [25] | Yan, X.; Qu, H.-M.; Chang, Y.; Duan, X.-X. Acta Chim. Sinica 2022, 80, 1183. (in Chinese) |
| [25] | (闫续, 屈贺幂, 常烨, 段学欣, 化学学报, 2022, 80, 1183.) |
| [26] | Liu, Y.; Qian, J.; Shi, Y.; Xu, Y.; Mao, Y.; Lv, R.; Huang, B.; Sun, Y.; Zhao, Z.; Chang, Y.; Xing, R.; Pang, H. Sustainable Mater. Technol. 2023, 36, e00588. |
| [27] | Chen, Y.; Guerin, S.; Yuan, H.; O’Donnell, J.; Xue, B.; Cazade, P.-A.; Haq, E. U.; Shimon, L. J. W.; Rencus-Lazar, S.; Tofail, S. A. M.; Cao, Y.; Thompson, D.; Yang, R.; Gazit, E. J. Am. Chem. Soc. 2022, 144, 3468. |
| [28] | Peng, P.; Anastasopoulou, A.; Brooks, K.; Furukawa, H.; Bowden, M. E.; Long, J. R.; Autrey, T.; Breunig, H. Nat. Energy 2022, 7, 448. |
| [29] | Hu, J.; Lai, C.; Chen, K.; Wu, Q.; Gu, Y.; Wu, C.; Li, C. Nat. Commun. 2022, 13, 7914. |
| [30] | Wang, Z.; Huang, Y.; Xu, K.; Zhong, Y.; He, C.; Jiang, L.; Sun, J.; Rao, Z.; Zhu, J.; Huang, J.; Xiao, F.; Liu, H.; Xia, B. Y. Nat. Commun. 2023, 14, 69. |
| [31] | Han, Z.; Wang, K.; Min, H.; Xu, J.; Shi, W.; Cheng, P. Angew. Chem., Int. Ed. 2022, 61, e202204066. |
| [32] | Gao, P.; Chen, Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Angew. Chem., Int. Ed. 2021, 60, 16763. |
| [33] | He, Y.; Li, D.; Wu, L.; Yin, X.; Zhang, X.; Patterson, L. H.; Zhang, J. Adv. Funct. Mater. 2023, 33, 2212277. |
| [34] | Sun, Z.; Li, T.; Mei, T.; Liu, Y.; Wu, K.; Le, W.; Hu, Y. J. Mater. Chem. B 2023, 11, 3273. |
| [35] | Qi, Y.; Ren, S.-S.; Che, Y.; Ye, J.-W.; Ning, G.-L. Acta Chim. Sinica 2020, 78, 613. (in Chinese) |
| [35] | (齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.) |
| [36] | Yaghi, O. M.; Richardson, D. A.; Li, G.; Davis, C. E.; Groy, T. L. MRS Online Proc. Libr. 1994, 371, 15. |
| [37] | Akiyama, G.; Matsuda, R.; Sato, H.; Takata, M.; Kitagawa, S. Adv. Mater. 2011, 23, 3294. |
| [38] | Xu, C.; Sun, K.; Zhou, Y.-X.; Ma, X.; Jiang, H.-L. Chem. Commun. 2018, 54, 2498. |
| [39] | Chen, L.; Zhang, X.; Cheng, X.; Xie, Z.; Kuang, Q.; Zheng, L. Nanoscale Adv. 2020, 2, 2628. |
| [40] | Mukoyoshi, M.; Kitagawa, H. Chem. Commun. 2022, 58, 10757. |
| [41] | Liu, J.; Goetjen, T. A.; Wang, Q.; Knapp, J. G.; Wasson, M. C.; Yang, Y.; Syed, Z. H.; Delferro, M.; Notestein, J. M.; Farha, O. K.; Hupp, J. T. Chem. Soc. Rev. 2022, 51, 1045. |
| [42] | Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W.; Huo, F. Adv. Mater. 2021, 33, 2007442. |
| [43] | Liu, Y.; Yue, C.; Sun, F.; Bao, W.; Chen, L.; Zeb, Z.; Wang, C.; Ma, S.; Zhang, C.; Sun, D.; Pan, Y.; Huang, Y.; Lu, Y.; Wei, Y. Chem. Eng. J. 2023, 454, 140105. |
| [44] | Su, D.; Wang, T.; Li, A.; Ma, Y.; Liu, X.; Wang, C.; Jia, X.; Sun, P.; Liu, F.; Yan, X.; Lu, G. Adv. Funct. Mater. 2022, 32, 2204130. |
| [45] | Hermes, S.; Schr?ter, M.-K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Angew. Chem., Int. Ed. 2005, 44, 6237. |
| [46] | Li, L.; Li, Y.; Jiao, L.; Liu, X.; Ma, Z.; Zeng, Y.-J.; Zheng, X.; Jiang, H.-L. J. Am. Chem. Soc. 2022, 144, 17075. |
| [47] | Lin, T.; Wang, H.; Cui, C.; Liu, W.; Li, G. Chem. Res. Chin. Univ. 2022, 38, 1309. |
| [48] | Habib, N. R.; Asedegbega-Nieto, E.; Taddesse, A. M.; Diaz, I. Dalton Trans. 2021, 50, 10340. |
| [49] | Sadakiyo, M. Nanoscale 2022, 14, 3398. |
| [50] | Li, B.; Ma, J.-G.; Cheng, P. Small 2019, 15, 1804849. |
| [51] | Kollmannsberger, K. L.; Kronthaler, L.; Jinschek, J. R.; Fischer, R. A. Chem. Soc. Rev. 2022, 51, 9933. |
| [52] | Chen, L.; Xu, Q. Matter 2019, 1, 57. |
| [53] | Yang, S.; Peng, L.; Bulut, S.; Queen, W. L. Chem.-Eur. J. 2019, 25, 2161. |
| [54] | Yang, Q.; Xu, Q.; Jiang, H.-L. Chem. Soc. Rev. 2017, 46, 4774. |
| [55] | Shao, S.; Cui, C.; Tang, Z.; Li, G. Nano Res. 2022, 15, 10110. |
| [56] | Xiang, W.; Zhang, Y.; Lin, H.; Liu, C.-J. Molecules 2017, 22, 2103. |
| [57] | Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; R?nnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926. |
| [58] | Feng, J.; Li, M.; Zhong, Y.; Xu, Y.; Meng, X.; Zhao, Z.; Feng, C. Microporous Mesoporous Mater. 2020, 294, 109858. |
| [59] | Chen, D.; Wei, L.; Yu, Y.; Zhao, L.; Sun, Q.; Han, C.; Lu, J.; Nie, H.; Shao, L.-X.; Qian, J.; Yang, Z. Inorg. Chem. 2022, 61, 15320. |
| [60] | Hao, M.; Li, Z. Appl. Catal. B: Environ 2022, 305, 121031. |
| [61] | Liu, G.-F.; Qiao, X.-X.; Cai, Y.-L.; Xu, J.-Y.; Yan, Y.; Karadeniz, B.; Lü, J.; Cao, R. ACS Appl. Nano Mater. 2020, 3, 11426. |
| [62] | Zhang, X.; Li, X.; Su, S.; Tan, M.; Liu, G.; Wang, Y.; Luo, M. Catal. Sci. Technol. 2023, 13, 705. |
| [63] | Liu, Q.; Li, Y.; Fan, Y.; Su, C.-Y.; Li, G. J. Mater. Chem. A 2020, 8, 11442. |
| [64] | Grad, O.; Blanita, G.; Lazar, M. D.; Mihet, M. Catalysts 2021, 11, 1412. |
| [65] | Liu, H.; Fu, Y.; Wang, X.; Luo, W.; Yang, W. Appl. Catal., A 2022, 643, 118788. |
| [66] | Ding, R.-D.; Li, D.-D.; Li, Y.-L.; Yu, J.-H.; Jia, M.-J.; Xu, J.-Q. ACS Appl. Nano Mater. 2021, 4, 4632. |
| [67] | Ding, R.-D.; Li, Y.-L.; Leng, F.; Jia, M.-J.; Yu, J.-H.; Hao, X.-F.; Xu, J.-Q. ACS Appl. Nano Mater. 2021, 4, 9790. |
| [68] | Zhou, Y.-H.; Cao, X.; Ning, J.; Ji, C.; Cheng, Y.; Gu, J. Int. J. Hydrogen Energy 2020, 45, 31440. |
| [69] | Zhu, Q.-L.; Li, J.; Xu, Q. J. Am. Chem. Soc. 2013, 135, 10210. |
| [70] | Roy, S.; Pachfule, P.; Xu, Q. Eur. J. Inorg. Chem. 2016, 2016, 4353. |
| [71] | Li, J.; Zhu, Q.-L.; Xu, Q. Catal. Sci. Technol. 2015, 5, 525. |
| [72] | Qin, Y.; Hao, M.; Wang, J.; Yuan, R.; Li, Z. ACS Appl. Mater. Interfaces 2022, 14, 56930. |
| [73] | Qin, Y.; Hao, M.; Ding, Z.; Li, Z. J. Catal. 2022, 410, 156. |
| [74] | Cheng, L.; Guo, Q.; Zhao, K.; Li, Y.-M.; Ren, H.; Ji, C.-Y.; Li, W. Catal. Lett. 2023, 153, 1024. |
| [75] | Dai, S.; Ngoc, K. P.; Grimaud, L.; Zhang, S.; Tissot, A.; Serre, C. J. Mater. Chem. A 2022, 10, 3201. |
| [76] | Lo, W.-S.; Chou, L.-Y.; Young, A. P.; Ren, C.; Goh, T. W.; Williams, B. P.; Li, Y.; Chen, S.-Y.; Ismail, M. N.; Huang, W.; Tsung, C.-K. Chem. Mater. 2021, 33, 1946. |
| [77] | Li, B.; Liu, Y.; Cheng, J. Sensors 2022, 22, 7039. |
| [78] | Choe, K.; Zheng, F.; Wang, H.; Yuan, Y.; Zhao, W.; Xue, G.; Qiu, X.; Ri, M.; Shi, X.; Wang, Y.; Li, G.; Tang, Z. Angew. Chem., Int. Ed. 2020, 59, 3650. |
| [79] | Liu, Y.; Wang, S.; Yu, B.; Zhang, Y.; Kong, X.; Mi, Y.; Zhang, J.; Guo, Z.; Xu, W.; Chen, X. Inorg. Chem. 2020, 59, 13184. |
| [80] | Liu, Y.; Shen, Y.; Zhang, W.; Weng, J.; Zhao, M.; Zhu, T.; Chi, Y. R.; Yang, Y.; Zhang, H.; Huo, F. Chem. Commun. 2019, 55, 11770. |
| [81] | Chen, B.; Yang, X.; Xu, Y.; Hu, S.; Zeng, X.; Liu, Y.; Tan, K. B.; Huang, J.; Zhan, G. Nanoscale 2022, 14, 15749. |
| [82] | Zhong, Y.; Liao, P.; Kang, J.; Liu, Q.; Wang, S.; Li, S.; Liu, X.; Li, G. J. Am. Chem. Soc. 2023, 145, 4659. |
| [83] | Li, L.; Li, Z.; Yang, W.; Huang, Y.; Huang, G.; Guan, Q.; Dong, Y.; Lu, J.; Yu, S.-H.; Jiang, H.-L. Chem 2021, 7, 686. |
| [84] | Ogiwara, N.; Kobayashi, H.; Inukai, M.; Nishiyama, Y.; Concepción, P.; Rey, F.; Kitagawa, H. Nano Lett. 2020, 20, 426. |
| [85] | Guo, M.; Du, Y.; Zhang, M.; Wang, L.; Zhang, X.; Li, G. ACS Sustainable Chem. Eng. 2022, 10, 7485. |
| [86] | Kobayashi, H.; Taylor, J. M.; Mitsuka, Y.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kitagawa, H. Chem. Sci. 2019, 10, 3289. |
| [87] | Zhang, W.; Shi, W.; Ji, W.; Wu, H.; Gu, Z.; Wang, P.; Li, X.; Qin, P.; Zhang, J.; Fan, Y.; Wu, T.; Fu, Y.; Zhang, W.; Huo, F. ACS Catal. 2020, 10, 5805. |
| [88] | Song, Y.; Feng, X.; Chen, J. S.; Brzezinski, C.; Xu, Z.; Lin, W. J. Am. Chem. Soc. 2020, 142, 4872. |
/
| 〈 |
|
〉 |